Skip to main content

Three-Dimensional Treatment Planning and Conformal Therapy

  • Chapter
Technical Basis of Radiation Therapy

9.9 Summary and Conclusion

The use of 3D CRT treatment planning and treatment has had a major impact on the practice of radiation therapy. There are very few tumor types whose treatment has not been radically impacted by its use. For the most part this impact has been of major importance and benefit. But as with any major technical advance, the requirements for its use have had a major impact on the requirement for enhanced quality assurance from all members of the treatment team. If one carefully reads the previous sections related to the quality-assurance demands made on the entire treatment team, it is obvious that a great deal more time is required from all involved in the quest to achieve precise and increased dose to the tumor PTV, and to minimize the dose to the normal organs at risk PRV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahnesjö A, Aspradakis MM (1999) Dose calculations for external photon beams in radiotherapy. Phys Med Biol 44: R99–R155

    Article  PubMed  Google Scholar 

  • Austin-Seymour M et al. (1995) Tumor and target delineation: current research and future challenges. Int J Radiat Oncol Biol Phys 33(5):1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Baxter BS, Hitchner LE, Maguire J (1982) GQ AAPM report no. 10: A standard format for digital image exchange. American Institute of Physics, New York

    Google Scholar 

  • Bedford JL, Shentall GS (1998) A digital method for computing target margins in radiotherapy. Med Phys 25(2):224–231

    Article  PubMed  CAS  Google Scholar 

  • Bennett B, McIntyre J (1993) Understanding DICOM 3.0 version 1.0. Kodak Health Imaging Systems

    Google Scholar 

  • Bradley J et al. (2004) Implementing biological target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 45(Suppl 1):96S–101S

    PubMed  Google Scholar 

  • Brahme A (1984) Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 23:379–391

    PubMed  CAS  Google Scholar 

  • Cygler JE et al. (2004) Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning. Med Phys 31(1):142–153

    Article  PubMed  CAS  Google Scholar 

  • Drzymala RE et al. (1991) Dose-volume histograms. Int J Radiat Oncol Biol Phys 21(1):71–78

    PubMed  CAS  Google Scholar 

  • Emami B et al. (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122

    PubMed  CAS  Google Scholar 

  • Erdi YE et al. (2002) Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 62(1):51–60

    Article  PubMed  Google Scholar 

  • Fraass BA, Smathers J, Deye JA (2003) Summary and recommendations of a National Cancer Intitute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy. Med Phys 30(12):3206–3216

    Article  PubMed  Google Scholar 

  • Garcia-Ramirez JL et al. (2002) Performance evaluation of an 85-cm-bore X-ray computed tomography scanner designed for radiation oncology and comparison with current diagnostic CT scanners. Int J Radiat Oncol Biol Phys 52(4):1123–1131

    Article  PubMed  Google Scholar 

  • Goitein M (1987) The probability of controlling an inhomogeneously irradiated tumor.

    Google Scholar 

  • Goitein M et al. (1983) Multi-dimensional treatment planning: II Beam’s eye view, back projection, and projection through CT sections. Int J Radiat Oncol Biol Phys 9:789–797

    PubMed  CAS  Google Scholar 

  • Harms WB Sr, Bosch WR, Purdy JA (1997) An interim digital data exchange standard for multi-institutional 3D conformal radiation therapy trials. In: Twelfth International Conference on the Use of Computers in Radiation Therapy, Salt Lake City Utah. Medical Physics Publishing, Madison, Wisconsin

    Google Scholar 

  • Hartmann Siantar CL et al. (2001) Description and dosimetric verification of the Peregrine Monte Carlo dose calculation system for photon beams incident on a water phantom. Med Phys 28(7):1322–1337

    Article  PubMed  CAS  Google Scholar 

  • Hill DLG et al. (2001) Medical image registration. Phys Med Biol 46:R1–R45

    Article  PubMed  CAS  Google Scholar 

  • ICRU (1993a) ICRU, report 50. Prescribing, recording, and reporting photon beam therapy I.C.o.R.U.a. Measurements editor. International Commission on Radiation Units and Measurements, Bethesda, Maryland

    Google Scholar 

  • ICRU (1993b) Prescribing, recording, and reporting photon beam therapy. International Commission on Radiation Units and Measurements, Bethesda, Maryland

    Google Scholar 

  • ICRU (1999) ICRU report 62. Prescribing, recording, and reporting photon beam therapy (supplement to ICRU report 50). International Commission on Radiation Units and Measurements, Bethesda, Maryland

    Google Scholar 

  • IMRT (2001) Collaborative Working Group. Intensity modulated radiation therapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51(4):880–914

    Article  Google Scholar 

  • Källman P, Lind BK, Brahme A (1992) An algorithm for maximizing the probability of complication free tumor control in radiation therapy. Int J Radiat Oncol Biol Phys 37:871–890

    Google Scholar 

  • Kessler ML, Li K (2001) Image fusion for conformal radiation therapy. In: Purdy JA et al. (eds) 3-D conformal and modulated radiation therapy: physics and clinical applications. Advanced Medical Publishing, Madison, Wisconsin, pp 71–82

    Google Scholar 

  • Kutcher G, Berman C (1989) Calculation of complication probability factors for non-uniform tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 16:1623–1630

    PubMed  CAS  Google Scholar 

  • Langen KM, Jones DTL (2001) Organ motion and its management. Int J Radiat Oncol Biol Phys 50(1):265–278

    Article  PubMed  CAS  Google Scholar 

  • Lau HY et al. (1996) Short communication: CT-MRI image fusion for 3D conformal prostate radiotherapy: use in patients with altered pelvic anatomy. Br J Radiol 69(825):1165–1170

    PubMed  CAS  Google Scholar 

  • Lawrence TS, Kessler ML, Ten Haken RK (1996) Clinical interpretation of dose-volume histograms: the basis for normal tissue preservation and tumor dose escalation. In: Meyer JL, Purdy JA (eds) Frontiers of radiation therapy oncology, vol 29. Karger, Basel, pp 57–66

    Google Scholar 

  • Liu HH (2001) Status of Monte Carlo dose calculation algorithms for three-dimensional treatment planning. In: Purdy JA et al. (eds) 3-D conformal and modulated radiation therapy: physics and clinical applications. Advanced Medical Publishing, Madison, Wisconsin, pp 201–220

    Google Scholar 

  • Lyman JT, Wolbarst AB (1987) Optimization of radiation therapy III: a method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys 13:103–109

    PubMed  CAS  Google Scholar 

  • Lyman JT, Wolbarst AB (1989) Optimization of radiation therapy IV: a dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 17(2):433–436

    PubMed  CAS  Google Scholar 

  • Mackie TR et al. (1985a) Lung dose corrections for 6-and 15-MV X rays. Med Phys 12:327–332

    Article  PubMed  CAS  Google Scholar 

  • Mackie TR, Scrimger JW, Battista JJ (1985b) A convolution method of calculating dose for 15-MV X-rays. Med Phys 12:188–196

    Article  PubMed  CAS  Google Scholar 

  • Mackie TR et al. (1996) Photon beam dose computations in teletherapy: present and future. In: Palta J, Mackie TR (eds) Advanced Medical Publishing, College Park, Maryland, pp 103–136

    Google Scholar 

  • Mah K et al. (2002) The impact of 18 FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52(2):339–350

    Article  PubMed  Google Scholar 

  • Marks LB et al. (1995) The role of three dimensional functional lung imaging in radiation treatment planning: the functional dose-volume histogram. Int J Radiat Oncol Biol Phys 33(1):65–75

    Article  PubMed  CAS  Google Scholar 

  • Marks LB et al. (1997) Quantification of radiation-induced regional lung injury with perfusion imaging. Int J Radiat Oncol Biol Phys 38(2):399–409

    Article  PubMed  CAS  Google Scholar 

  • McGary JE et al. (1997) Comment on “Reporting and analyzing dose distributions: a concept of equivalent uniform dose [Med Phys 24:103–109 (1997)]. Med Phys 24(8):1323–1324

    Article  PubMed  CAS  Google Scholar 

  • McGary JE, Grant W, Woo SY (2000) Applying the equivalent uniform dose formulation based on the linear-quadratic model to inhomogeneous tumor dose distributions: caution for analyzing and reporting. J Appl Clin Med Phys 1(4):126–137

    Article  PubMed  CAS  Google Scholar 

  • McShan DL et al. (1979) A computerized three-dimensional treatment planning system utilizing interactive color graphics. Br J Radiol 52:478–481

    PubMed  CAS  Google Scholar 

  • Meyer JL, JA Purdy (eds) (1996) 3-D Conformal radiotherapy: a new era in the irradiation of cancer. Frontiers of radiation therapy and oncology, vol 29. Karger, Basel

    Google Scholar 

  • Mohan R, Chui C, Lidofsky L (1986) Differential pencil beam dose computation model for photons. Med Phys 13:64–73

    Article  PubMed  CAS  Google Scholar 

  • Mutic S et al. (2003) Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group no. 68. Med Phys 30(10):2762–2792

    Article  PubMed  Google Scholar 

  • Niemierko A (1997a) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24(1):103–110

    Article  PubMed  CAS  Google Scholar 

  • Niemierko A (1997b) Response to “Comment on ‘Reporting and analyzing dose distributions: a concept of equivalent uniform dose’” [Med Phys 24:1323–1324 (1997)]. Med Phys 24(8):1325–1327

    Article  Google Scholar 

  • Niemierko A, Goitein M (1991) Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture. Radiother Oncol 20:166–176

    Article  PubMed  CAS  Google Scholar 

  • Olsen DR, Kambestad BK, Kristoffersen DT (1994) Calculation of radiation induced complication probabilities for brain, liver and kidney, and the use of a reliability model to estimate critical volume fractions. Br J Radiol 67:1218–1225

    Article  PubMed  CAS  Google Scholar 

  • Perez CA et al. (1994) Design of a fully integrated three-dimensional computed tomography simulator and preliminary clinical evaluation. Int J Radiat Oncol Biol Phys 30(4):887–897

    PubMed  CAS  Google Scholar 

  • Purdy JA (1992) Photon dose calculations for three-dimensional radiation treatment planning. Semin Radiat Oncol 2(4):235–245

    Article  PubMed  Google Scholar 

  • Purdy JA (1996a) 3-D radiation treatment planning: a new era. In: Meyer JL, Purdy JA (eds) Frontiers of radiation therapy and oncology 3-D conformal radiotherapy: a new era in the irradiation of cancer. Karger, Basel, pp 1–16

    Google Scholar 

  • Purdy JA (1996b) Defining our goals: volume and dose specification for 3-D conformal radiation therapy. In: Meyer JL, Purdy JA (eds) Frontiers of radiation therapy and oncology 3-D conformal radiotherapy: a new era in the irradiation of cancer. Karger, Basel, pp 24–30

    Google Scholar 

  • Purdy JA (1996c) Volume and dose specification, treatment evaluation, and reporting for 3D conformal radiation therapy. In: Palta J, Mackie TR (eds) Teletherapy: present and future. Advanced Medical Publishing, College Park, Maryland, pp 235–251

    Google Scholar 

  • Purdy JA (1997) Advances in three-dimensional treatment planning and conformal dose delivery. Semin Oncol 24:655–672

    PubMed  CAS  Google Scholar 

  • Purdy JA (1998) Three-dimensional treatment planning and conformal dose delivery: a physicist’s perspective. In: Mittal BB, Purdy JA, Ang KK (eds) Advances in radiation therapy. Kluwer Academic Publishers, Boston, pp 1–33

    Google Scholar 

  • Purdy JA (1999) 3D treatment planning and intensity-modulated radiation therapy. Oncology 13:155–168

    PubMed  CAS  Google Scholar 

  • Purdy JA (2000) Dose-volume specification and reporting. In: Shiu AS, Mellenberg DE (eds) General practice of radiation oncology physics in the 21st century. Medical Physics Publishing, Madison, Wisconsin, pp 3–15

    Google Scholar 

  • Purdy JA, G Starkschall (1999) A practical guide to 3-D planning and conformal radiation therapy. Advanced Medical Publishing, Madison, Wisconsin, p 369

    Google Scholar 

  • Purdy JA et al. (1987) Three dimensional radiation treatment planning system. In: Proc 9th International Conference on the Use of Computers in Radiation Therapy. Elsevier, Scheveningen, The Netherlands

    Google Scholar 

  • Purdy JA et al. (1993) Advances in 3-dimensional radiation treatment planning systems: room-view display with real time interactivity. Int J Radiat Oncol Biol Phys 27(4):933–944

    PubMed  CAS  Google Scholar 

  • Purdy JA et al. (1996) Multi-institutional clinical trials: 3-D conformal radiotherapy quality assurance. In: Meyer JL, Purdy JA (eds) Frontiers of radiation therapy and oncology 3-D conformal radiotherapy: a new era in the irradiation of cancer. Karger, Basel, pp 255–263

    Google Scholar 

  • Reinstein LE et al. (1978) A computer-assisted three-dimensional treatment planning system. Radiology 127:259–264

    PubMed  CAS  Google Scholar 

  • Roach M et al. (1996) Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 35(5):1011–1018

    Article  PubMed  Google Scholar 

  • Rosenman JG et al. (1998) Image registration: an essential part of radiation therapy treatment planning. Int J Radiat Oncol Biol Phys 40(1):197–205

    Article  PubMed  CAS  Google Scholar 

  • Sherouse GW, Novins K, Chaney EL (1990) Computation of digitally reconstructed radiographs for use in radiotherapy treatment design. Int J Radiat Oncol Biol Phys 18(3):651–658

    PubMed  CAS  Google Scholar 

  • Siddon RL (1985) Fast calculation of the exact radiological path for a three-dimensional CT array. Med Phys 12:252–255

    Article  PubMed  CAS  Google Scholar 

  • Withers HR, Taylor JMG, Maciejewski B (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14:751–759

    PubMed  CAS  Google Scholar 

  • Young MEJ, Kornelsen RO (1983) Dose corrections for lowdensity tissue inhomogeneities and air channels for 10-MV X-rays. Med Phys 10(4):450–455

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Purdy, J.A., Michalski, J.M., Bradley, J., Vijayakumar, S., Perez, C.A., Levitt, S.H. (2006). Three-Dimensional Treatment Planning and Conformal Therapy. In: Levitt, S.H., Purdy, J.A. (eds) Technical Basis of Radiation Therapy. Medical Radiology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35665-7_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-35665-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21338-3

  • Online ISBN: 978-3-540-35665-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics