Skip to main content

Combinations of Ionizing Radiation and Other Sensitizing Agents

  • Chapter
  • 567 Accesses

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham DJ, Peascoe RA, Randad RS, Panikker J (1992) X-ray diffraction study of di and tetra-ligated T-state hemoglobin from high salt crystals. J Mol Biol 227:480–492

    Article  PubMed  CAS  Google Scholar 

  • Andrews DW, Scott C, Sperduto PW et al (2004) Phase III randomized trial comparing whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: results of the RTOG 9508 trial. Lancet 363:1665–1673

    Article  PubMed  Google Scholar 

  • Antonadou D, Paraskevaidis M, Sarris G et al (2002a) Phase II randomized trial of temozolomide and concurrent radiotherapy in patients with brain metastases. J Clin Oncol 20:3644–3650

    Article  PubMed  CAS  Google Scholar 

  • Antonadou D, Coliarakis N, Paraskevaidis M et al (2002b) Whole brain radiotherapy alone or in combination with temozolomide for brain metastases. A phase III study (Abstract). Int J Radiat Oncol Biol Phys 54(Suppl):93–94

    Article  Google Scholar 

  • Athanassiou H, Synodinou M, Maragoudakis E et al (2005) Randomized phase II study of temozolomide and radiotherapy compared with radiotherapy alone in newly diagnosed glioblastoma multiforme. J Clin Oncol 23:2372–2377

    Article  PubMed  CAS  Google Scholar 

  • Biaglow JE, Miller RA (2005) The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy. Cancer Biol Ther 4:6–13

    Article  PubMed  CAS  Google Scholar 

  • Calabrese CR, Almassy R, Barton S et al (2004) Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96:56–67

    Article  PubMed  CAS  Google Scholar 

  • Carde P, Timmerman B, Koprowski D et al (1998) Gadolinium-Texaphyrin (Gd-Tex) radiation sensitizer: improved survival in a phase IB/II trial in patients with brain metastases (Abstract). Proc Am Soc Clin Oncol 17:379a

    Google Scholar 

  • Carde P, Timmerman R, Mehta MP et al (2001) Multicenter phase Ib/II trial of the radiation enhancer motexafin gadolinium in patients with brain metastases. J Clin Oncol 19:2074–2083

    PubMed  CAS  Google Scholar 

  • Chinnasamy N, Rafferty JA, Hickson I et al (1997) O6-benzyl-guanine potentiates the in vivo toxicity and clastogenicity of temozolomide and BCNU in mouse bone marrow. Blood 89:1566–1573

    PubMed  CAS  Google Scholar 

  • Combs SE, Gutwein S, Schulz-Ertner D et al (2004) Temozolomide combined with radiation as first-line treatment in primary glioblastoma multiforme: phase I/II study (Abstract). J Clin Oncol 22(14S):1531

    Google Scholar 

  • Curtin NJ, Wang LZ, Yiakouvaki A et al (2004) Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin Cancer Res 10:881–889

    Article  PubMed  CAS  Google Scholar 

  • Denny BJ, Wheelhouse RT, Stevens MF et al (1994) NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry 33:9045–9051

    Article  PubMed  CAS  Google Scholar 

  • Dolan ME, Stine L, Mitchell RB et al (1990) Modulation of mammalian O6-alkylguanine-DNA alkyltransferase in vivo by O6-benzylguanine and its effect on the sensitivity of a human glioma tumor to 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea. Cancer Commun 2:371–377

    PubMed  CAS  Google Scholar 

  • Donnelly ET, Liu Y, Paul TK, Rockwell S (2005) Effects of motexafin gadolinium on DNA damage and X-ray-induced DNA damage repair, as assessed by the Comet assay. Int J Radiat Oncol Biol Phys 62:1176–1186

    Article  PubMed  CAS  Google Scholar 

  • Esteller M, Herman JG (2004) Generating mutations but providing chemosensitivity: the role of O6-methylgauanine DNA methyltransferase in human cancer. Oncogene 23:1–8

    Article  PubMed  CAS  Google Scholar 

  • Estellar M, Hamilton SR, Burger PC et al (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    Google Scholar 

  • Esteller M, Garcia-Foncillas J, Andion E et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Evans RG, Kimler BF, Morantz RA et al (1990) A phase I/II study of the use of Fluosol as an adjuvant to radiation therapy in the treatment of primary high-grade brain tumors. Int J Radiat Oncol Biol Phys 19:415–420

    PubMed  CAS  Google Scholar 

  • Ford J, Seiferheld W, Mehta M et al (2003) Comparison of survival of patients in the phase I study of motexafin gadolinium (MGd) with radiation therapy (RT) for glioblastoma multiforme (GBM), with a matched cohort of patients from the RTOG RPA glioma data base (Abstract). Proc Am Soc Clin Oncol 22:106

    Google Scholar 

  • Friedman HS, McLendon RE, Kerby T et al (1998) DNA mismatch repair and O6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J Clin Oncol 16:3851–3857

    PubMed  CAS  Google Scholar 

  • Furonaka O, Takeshima Y, Awaya H et al (2005) Aberrant methylation and loss of expression of O-methylguanine-DNA methyltransferase in pulmonary squamous cell carcinoma and adenocarcinoma. Pathol Int 55:303–309

    Article  PubMed  CAS  Google Scholar 

  • Hegi ME, Diserens AC, Godard S et al (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10:1871–1874

    Article  PubMed  CAS  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Jaeckle KA, Eyre HJ, Townsend JJ et al (1998) Correlation of tumor O6 methylguanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bis-chloroethylnitrosourea: a Southwest Oncology Group study. J Clin Oncol 16:3310–3315

    PubMed  CAS  Google Scholar 

  • Karran P, Marinus MG (1982) Mismatch correction at O6-methylguanine residues in E. coli DNA. Nature 296:868–869

    Article  PubMed  CAS  Google Scholar 

  • Kesslering C, Renschler M, Vanel D et al (1998) Selective uptake and retention of the radiation sensitizer Gadolinium Texaphyrin (Gd-Tex) in tumors demonstrated by MRI in phase I and phase II clinical trials (Abstract). Int J Radiat Oncol Biol Phys 42:263

    Article  Google Scholar 

  • Lapidus RG, Tentori L, Graziani G et al (2005) Oral administration of PARP inhibitor GPI 18180 increases the anti-tumor activity of temozolomide against intracranial melanoma in mice (Abstract). J Clin Oncol 23(16S):3136

    Google Scholar 

  • Lee SW, Fraass BA, Marsh LH et al (1999) Patterns of failure following high-dose 3-D conformal radiotherapy for high-grade astrocytomas: a quantitative dosimetric study. Int J Radiat Oncol Biol Phys 43:79–88

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Markowitz S, Gerson SL (1996) Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl)nitrosourea. Cancer Res 56:5375–5379

    PubMed  CAS  Google Scholar 

  • Ludlum DB (1990) DNA alkylation by the haloethylnitrosoureas: nature of modifications produced and their enzymatic repair or removal. Mutat Res 233:117–126

    PubMed  CAS  Google Scholar 

  • Magda D, Lepp C, Gerasimchuk N et al (2001) Redox cycling by motexafin gadolinium enhances cellular response to ionizing radiation by forming reactive oxygen species. Int J Radiat Oncol Biol Phys 51:1025–1036

    Article  PubMed  CAS  Google Scholar 

  • Manon R, Hui S, Chinnaiyan P, et al (2004) The impact of mid-treatment MRI on defining boost volumes in the radiation treatment of glioblastoma multiforme. Technol Cancer Res Treat 3:303–307

    PubMed  Google Scholar 

  • McGinn CJ, Shewach DS, Lawrence TS (1996) Radiosensitizing nucleosides. J Natl Cancer Inst 88:1193–1203

    PubMed  CAS  Google Scholar 

  • Mehta MP, Suh JH (2004) Novel radiosensitizers for tumors of the central nervous system. Curr Opin Invest Drugs 5:1284–1291

    CAS  Google Scholar 

  • Mehta M, Ford J, Carde P et al (1999) Gadolinium texaphyrin (Gd-Tex), a tumor selective radiation sensitizer for primary and metastatic brain tumors (Abstract). Neuro-Oncol 1:540

    Google Scholar 

  • Mehta MP, Seiferheld W, Delrowe J et al (2001a) Glioblastoma multiforme: the phase II RTOG Experience (Abstract). Neuro-Oncol 3:350

    Google Scholar 

  • Mehta M, Ames M, Reid J et al (2001b) Phase I study of Motexafin-Gadolinium (M-Gd) as a radiosensitizer for pediatric intrinsic pontine glioma (BSG): a Children’s Oncology Group study (Abstract). Proc Am Soc Clin Oncol 20:62a

    Google Scholar 

  • Mehta MP, Shapiro WR, Glantz MJ et al (2002) Lead-in phase to randomized trial of motexafin gadolinium and whole-brain radiation for patients with brain metastases: centralized assessment of magnetic resonance imaging, neurocognitive, and neurologic end points. J Clin Oncol 20:3445–3453

    Article  PubMed  CAS  Google Scholar 

  • Mehta MP, Rodrigus P, Terhaard CHJ et al (2003) Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole brain radiation therapy in brain metastases. J Clin Oncol 21:2529–2536

    Article  PubMed  CAS  Google Scholar 

  • Mehta M, Ford JM, Suh J, Phan S (2004) Cumulative dose of motexafin gadolinium and survival in newly diagnosed glioblastoma multiforme (Abstract). Neuro-Oncol 6:378

    Google Scholar 

  • Miller RA, Woodburn K, Fan Q et al (1999) In vivo animal studies with gadolinium (III) texaphyrin as a radiation enhancer. Int J Radiat Oncol Biol Phys 45:981–989

    Article  PubMed  CAS  Google Scholar 

  • Miller RA, Woodburn KW, Fan Q et al (2001) Motexafin gadolinium: a redox active drug that enhances the efficacy of bleomycin and doxorubicin. Clin Cancer Res 7:3215–3221

    PubMed  CAS  Google Scholar 

  • Mintz AH, Kestle J, Rathbone MP et al (1996) A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis. Cancer 78:1470–1476

    Article  PubMed  CAS  Google Scholar 

  • Noordijk EM, Vecht CJ, Haaxma-Reiche J et al (1994) The choice of treatment of single brain metastasis should be based on extracranial tumor activity and age. Int J Radiat Oncol Biol Phys 29:711–717

    PubMed  CAS  Google Scholar 

  • Patchell RA, Tibbs PA, Walsh JW et al (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 322:494–500

    Article  PubMed  CAS  Google Scholar 

  • Patel M, McCully C, Godwin K et al (2003) Plasma and cerebrospinal fluid pharmacokinetics of intravenous temozolomide in non-human primates. J Neurooncol 61:203–207

    Article  PubMed  Google Scholar 

  • Patel RR, Tomé WA, Mehta MP (2004) Radiation therapy for CNS tumors. In: Principles of neurosurgery, 2nd edn. Rengachary S and Ellenbogen R (eds) Mosby, St. Louis, pp 719–728

    Google Scholar 

  • Paz MF, Yaya-Tur R, Rojas-Marcos I et al (2004) CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 10:4933–4938

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE, Wiest L, Foote RS et al (1983) Purification and properties of O6-methylguanine-DNA transmethylase from rat liver. J Biol Chem 258:2327–2333

    PubMed  CAS  Google Scholar 

  • Pieper RO (1997) Understanding and manipulating O6-methylguanine-DNA methyltransferase expression. Pharmacol Ther 74:285–297

    Article  PubMed  CAS  Google Scholar 

  • Phillips TL, Scott CB, Leibel SA et al (1995) Results of a randomized comparison of radiotherapy and bromodeoxyuridine with radiotherapy alone for brain metastases: report of RTOG trial 89-05. Int J Radiat Oncol Biol Phys 33:339–348

    Article  PubMed  CAS  Google Scholar 

  • Plummer R, Middleton M, Wilson R et al (2005) First in human phase I trial of the PARP inhibitory AG-014699 with temozolomide (TMZ) in patients with advanced solid tumors (Abstract). J Clin Oncol 23(16S):3065

    Google Scholar 

  • Prados MD, Scott C, Sandler H et al (1999) A phase 3 randomized study of radiotherapy plus procarbazine, CCNU, and vincristine (PCV) with or without BUdR for the treatment of anaplastic astrocytoma: a preliminary report of RTOG 9404. Int J Radiat Oncol Biol Phys 45:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Qian XC, Brent TP (1997) Methylation hot spots in the 5’ flanking region denote silencing of the O6-methylguanine-DNA methyltransferase gene. Cancer Res 57:3672–3677

    PubMed  CAS  Google Scholar 

  • Reid JM, Stevens DC, Rubin J et al (1997) Pharmacokinetics of 3-methyl-(triazen-1-yl)imidazole-4-carboximide following administration of temozolomide to patients with advanced cancer. Clin Cancer Res 3:2393–2398

    PubMed  CAS  Google Scholar 

  • Rockwell S, Donnelly ET, Liu Y, Tang LQ (2002) Preliminary studies of the effects of gadolinium texaphyrin on the growth and radiosensitivity of EMT6 cells in vitro. Int J Radiat Oncol Biol Phys 54:536–541

    Article  PubMed  CAS  Google Scholar 

  • Rodrigus P (2003) Motexafin gadolinium: a possible new radiosensitizer. Exp Opinion Invest Drugs 12:1205–1210

    Article  CAS  Google Scholar 

  • Roos W, Baumgartner M, Kaina B (2004) Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1. Oncogene 23:359–367

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal DI, Becerra CR, Toto RD et al (2000) Reversible renal toxicity resulting from high single doses of the new radiosensitizer gadolinium texaphyrin. Am J Clin Oncol 23:593–598

    Article  PubMed  CAS  Google Scholar 

  • Schold SC Jr, Kokkinakis DM, Chang SM et al (2004) O6-benzylguanine suppression of O6-alkylguanine-DNA alkyltransferase in anaplastic gliomas. Neuro-Oncol 6:28–32

    Article  PubMed  CAS  Google Scholar 

  • Siena S, Landonio G, Baietta E et al (2003) Multicenter phase II study of temozolomide therapy for brain metastasis in patients with malignant melanoma, breast cancer, and non-small cell lung cancer (Abstract). Proc Am Soc Clin Oncol:102

    Google Scholar 

  • Silber JR, Blank A, Bobola MS et al (1999) O6-methylguanine-DNA methyltransferase-deficient phenotype in human gliomas: frequency and time to tumor progression after alkylating agent-based chemotherapy. Clin Cancer Res 5:807–814

    PubMed  CAS  Google Scholar 

  • Srivenugopal KS, Shou J, Mullapudi SR et al (2001) Enforced expression of wild-type p53 curtails the transcription of the O(6)-methylguanine-DNA methyltransferase gene in human tumor cells and enhances their sensitivity to alkylating agents. Clin Cancer Res 7:1398–1409

    PubMed  CAS  Google Scholar 

  • Stasio G de, Casalbore P, Gilbert B et al (2001) Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy (GdNCT). Cancer Res 61:4272–4277

    PubMed  Google Scholar 

  • Stasio G de, Rajesh D, Casalbore P et al (2005) Are gadolinium contrast agents suitable for gadolinium neutron capture therapy? Neuro Res 27:387–398

    Article  Google Scholar 

  • Stupp R, Dietrich PY, Ostermann Kraljevic S et al (2002) Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20:1375–1382

    Article  PubMed  CAS  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  • Suh J, Chang E, Timmerman R et al (2002) Phase II trial of motexafin gadolinium (MGd, Xcytrin) and cranial radiation in newly diagnosed glioblastoma multiforme (Abstract). Proc Am Soc Clin Oncol 21:74b

    Google Scholar 

  • Tentori L, Portarena I, Bonmassar E, Graziani G (2001) Combined effects of adenovirus-mediated wild-type p53 transduction, temozolomide and poly (ADP-ribose) polymerase inhibitor in mismatch repair deficient and non-proliferating tumor cells. Cell Death Differ 8:457–469

    Article  PubMed  CAS  Google Scholar 

  • Tentori L, Portarena I, Graziani G (2002) Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol Res 45:73–85

    Article  PubMed  CAS  Google Scholar 

  • Tolcher AW, Gerson SL, Denis et al (2003) Marked inactivation of O6-alkylguanineDNA alkyltransferase activity with protracted temozolomide schedules. Br J Cancer 88:1004–1011

    Article  PubMed  CAS  Google Scholar 

  • van Rijn J, Heimans JJ, van den Berg J et al (2000) Survival of human glioma cells treated with various combination of temozolomide and X-rays. Int J Radiat Oncol Biol Phys 47:779–784

    Article  PubMed  Google Scholar 

  • Verger E, Gil M, Yaya R et al (2003) Concomitant temozolomide and whole brain radiotherapy in patients with brain metastases: randomized multicentric phase II study (Abstract). Proc Am Soc Clin Oncol 22:101

    Google Scholar 

  • Walker MD, Strike TA, Sheline GE (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5:1725–1731

    PubMed  CAS  Google Scholar 

  • Wallner KE, Galicich JH, Krol G et al (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405–1409

    PubMed  CAS  Google Scholar 

  • Watts GS, Pieper RO, Costello JF et al (1997) Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene. Mol Cell Biol 17:5612–5619

    PubMed  CAS  Google Scholar 

  • Wedge SR, Porteous JK, May BL, Newlands ES (1996a) Potentiation of temozolomide and BCNU cytotoxicity by O(6)-benzylguanine: a comparative study in vitro. Br J Cancer 73:482–490

    PubMed  CAS  Google Scholar 

  • Wedge SR, Porteous JK, Newlands ES (1996b) 3-aminobenzamide and/or O6-benzylguanine evaluated as an adjuvant to temozolomide or BCNU treatment in cell lines of variable mismatch repair status and O6-alkylguanine-DNA alkyltransferase activity. Br J Cancer 74:1030–1036

    PubMed  CAS  Google Scholar 

  • Wedge SR, Porteous JK, Glaser MG et al (1997) In vitro evaluation of temozolomide combined with X-irradiation. Anticancer Drugs 8:92–97

    PubMed  CAS  Google Scholar 

  • Wick W, Wick A, Schulz JB et al (2002) Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res 62:1915–1919

    PubMed  CAS  Google Scholar 

  • Woodburn KW (2001) Intracellular localization of the radiation enhancer motexafin gadolinium using interferometric Fourier fluorescence microscopy. J Pharmacol Exp Ther 297:888–894

    PubMed  CAS  Google Scholar 

  • Xu S, Zakian K, Thaler H et al (2001) Effects of motexafin gadolinium on tumor metabolism and radiation sensitivity. Int J Radiat Oncol Biol Phys 49:1381–1390

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mehta, M.P. (2006). Combinations of Ionizing Radiation and Other Sensitizing Agents. In: Brown, J.M., Mehta, M.P., Nieder, C. (eds) Multimodal Concepts for Integration of Cytotoxic Drugs. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35662-2_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-35662-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25655-7

  • Online ISBN: 978-3-540-35662-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics