Skip to main content

Large Deformation Fluid-Structure Interaction – Advances in ALE Methods and New Fixed Grid Approaches

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 53))

Abstract

This contribution focusses on computational approaches for fluid structure interaction problems from several perspectives. Common driving force is the desire to handle even the large deformation case in a robust, efficient and straightforward way. In order to meet these requirements main subjects are on the one hand necessary improvements on coupling issues as well as on Arbitrary Lagrangian Eulerian (ALE) approaches. On the other hand, we discuss pros and cons of avail-able fixed grid approaches and start the development of new such approaches. Some numerical examples are provided along the paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belytschko, T., Kennedy, J.: Computer models for subassembly simulation. Journal of Nuclear Engineering and Design 49 (1978) 17–38

    Article  Google Scholar 

  2. Belytschko, T., Kennedy, J., Schoeberle, D.: Quasi-Eulerian finite element formulation for fluid structure interaction. Journal of Pressure Vessel Technology 102 (1980) 62–69

    Google Scholar 

  3. Donéa, J., Fasoli-Stella, P., Giuliani, S.: Lagrangian and eulerian finite element techniques for transient fluid-structure interaction problems. In: Trans. 4th Int. Conf. on Structural Mechanics in Reactor Technology. (1977)

    Google Scholar 

  4. Hirth, C., Amsden, A., Cook, J.: An Arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics 14 (1974) 227–253,

    Article  Google Scholar 

  5. Hughes, T.J., Liu, W.K., Zimmermann, T.: Lagrangian-eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering 29 (1981) 329–349

    Article  MATH  MathSciNet  Google Scholar 

  6. Noh, W.: CEL: A time-dependent two-space-dimensional coupled Eulerian- Lagrangian code. In Alder, B., Fernbach, S., Rotenberg, M., eds.: Methods in Computational Physics. Volume 3., Academic Press: New York (1964) 117–179

    Google Scholar 

  7. Peskin, C.S.: Numerical analysis of blood flow in the heart. Journal of Computational Physics 25(3) (1977) 220–252

    Article  MATH  MathSciNet  Google Scholar 

  8. Peskin, C.S.: The immersed boundary method. Acta Numerica 11(1) (2002) 479–517

    Article  MATH  MathSciNet  Google Scholar 

  9. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annual Review of Fluid Mechanics 37(1) (2005) 239–261

    Article  MathSciNet  Google Scholar 

  10. Wang, X., Liu, W.K.: Extended immersed boundary method using FEM and RKPM. Computer Methods in Applied Mechanics and Engineering 193(12–14) (2004) 1305–1321

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhang, L., Gerstenberger, A., Wang, X., Liu, W.K.: Immersed finite element method. Computer Methods in Applied Mechanics and Engineering 193(21–22) (2004) 2051–2067

    Article  MATH  MathSciNet  Google Scholar 

  12. LeVeque, R.J., Calhoun, D.: Cartesian grid methods for fluid flow in complex geometries. In Fauci, L.J., Gueron, S., eds.: Computational Modeling in Biological Fluid Dynamics. Volume 124., IMA Volumes in Mathematics and its Applications, Springer-Verlag (2001) 117–143

    Google Scholar 

  13. Lee, L., LeVeque, R.J.: An immersed interface method for incompressible Navier-Stokes equations. SIAM Journal on Scientific Computing 25(3) (2003) 832–856

    Article  MATH  MathSciNet  Google Scholar 

  14. Glowinski, R., Pan, T.W., Periaux, J.: A.ctitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering 112(1–4) (1994) 133–148

    Article  MATH  MathSciNet  Google Scholar 

  15. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D.: A distributed lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow 25(5) (1999) 755–794

    Article  Google Scholar 

  16. Baaijens, F.P.T.: A fictitious domain/mortar element method for fluidstructure interaction. International Journal for Numerical Methods in Fluids 35(7) (2001) 743–761

    Article  MATH  MathSciNet  Google Scholar 

  17. De Hart, J., Peters, G.W., Schreurs, P.J., Baaijens, F.P.: A two-dimensional fluid-structure interaction model of the aortic value. Journal of Biomechanics 33(9) (2000) 1079–1088

    Article  Google Scholar 

  18. van Loon, R., Anderson, P.D., Baaijens, F.P., van de Vosse, F.N.: A threedimensional fluid-structure interaction method for heart valve modelling. Comptes Rendus Mecanique 333(12) (2005) 856–866

    Article  Google Scholar 

  19. Yu, Z.: A DLM/FD method for fluid/flexible-body interactions. Journal of Computational Physics 207(1) (2005) 1–27

    Article  MATH  Google Scholar 

  20. van Loon, R., Anderson, P.D., de Hart, J., Baaijens, F.P.T.: A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves. International Journal for Numerical Methods in Fluids 46(5) (2004) 533–544

    Article  MATH  Google Scholar 

  21. Legay, A., Chessa, J., Belytschko, T.: An Eulerian-Lagrangian method for fluid-structure interaction based on level sets. Computer Methods in Applied Mechanics and Engineering In Press (2005)

    Google Scholar 

  22. Hirt, C.W., Nichols, B.D.: Volume of fluid (vof) method for the dynamics of free boundaries. Journal of Computational Physics 39(1) (1981) 201–225

    Article  MATH  Google Scholar 

  23. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics 114(1) (1994) 146–159

    Article  MATH  Google Scholar 

  24. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics 152(2) (1999) 457–492

    Article  MATH  MathSciNet  Google Scholar 

  25. Cirak, F., Radovitzky, R.: A lagrangian-eulerian shell-fluid coupling algorithm based on level sets. Computers & Structures 83(6–7) (2005) 491–498

    Article  Google Scholar 

  26. Idelsohn, S.R., Onate, E., Del Pin, F.: A lagrangian meshless finite element method applied to fluid-structure interaction problems. Computers & Structures 81(8–11) (2003) 655–671

    Article  Google Scholar 

  27. Bischoff, M., Wall, W.A., Bletzinger, K.U., Ramm, E.: Models and finite elements for thin-walled structures. In Stein, E., de Borst, R., Hughes, T.J., eds.: Encyclopedia of Computational Mechanics. Volume 2., John Wiley & Sons, Ltd. (2004) 59–137

    Google Scholar 

  28. Frenzel, M., Bischoff, M., Bletzinger, K.U.,Wall, W.A.: Performance of discrete strain gap (dsg) finite elements in the analysis of three-dimensional solids. In: Extended Abstracts of the 5th International Conference on Computation of Shell and Spatial Structures, Salzburg, Austria. (2005)

    Google Scholar 

  29. Gee, M., Ramm, E., Wall, W.A.: Parallel multilevel solution of nonlinear shell structures. Computer Methods in Applied Mechanics and Engineering 194(21–24,) (2005) 2513–2533

    Article  MATH  Google Scholar 

  30. Förster, C., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible flow. In preparation (2005)

    Google Scholar 

  31. Mok, D.P.: Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion. Technical Report PhD Thesis, Report No. 36, Institute of Structural Mechanics, University of Stuttgart (2001)

    Google Scholar 

  32. Mok, D.P., Wall, W.A.: Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures. In Wall, W., Bletzinger, K.U., Schweizerhof, K., eds.: Trends in Computational Structural Mechanics, CIMNE: Barcelona (2001) 689–698

    Google Scholar 

  33. Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass e.ect in the design of partitioned algorithms for fluid-structure problems. Computer Methods in Applied Mechanics and Engineering 194(42–44) (2005) 4506–4527

    Article  MATH  MathSciNet  Google Scholar 

  34. Le Tallec, P., Mouro, J.: Fluid structure interaction with large structural displacements. Computer Methods in Applied Mechanics and Engineering 190 (2001) 3039–3067

    Article  MATH  Google Scholar 

  35. Wall, W.A., Mok, D.P., Ramm, E.: Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structurs. In Wunderlich, W., ed.: Solids, Structures and Coupled Problems in Engineering, Proceedings of the European Conference on Computational Mechanics ECCM ’99, Munich (1999)

    Google Scholar 

  36. Irons, B., Tuck, R.C.: A version of the Aitken acceleratior for computer implementation. International Journal for Numerical Methods in Engineering 1 (1969) 275–277

    Article  MATH  Google Scholar 

  37. Farhat, C., Lesoinne, M., LeTallec, P.: Load and motion transfer algorithms for fluid/structure intreaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering 157 (1998) 95–114

    Article  MATH  MathSciNet  Google Scholar 

  38. Hron, J., Turek, S.: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Unpublished Proposal (2004)

    Google Scholar 

  39. Schäfer, M., Turek, S.: Benchmark computations of laminar flow around a cylinder. Notes on Numerical Fluid Mechanics 52 (1996) 547–566

    Google Scholar 

  40. Förster, C., Wall, W.A., Ramm, E.: Modeling and coupling issues in computational fluid structure interaction. in preparation (2005)

    Google Scholar 

  41. Hughes, T.J.R., Engel, G., Mazzei, L., Larson, M.G.: The continous Galerkin method is locally conservative. Journal of Computational Physics 163 (2000) 467–488

    Article  MATH  MathSciNet  Google Scholar 

  42. Förster, C., Wall, W.A., Ramm, E.: On residual based stabilisation methods for transient problems at small time increments. in preparation (2005)

    Google Scholar 

  43. Ramm, E., Wall, W.A.: Shell structures – a sensitive interrelation between physics and numerics. International Journal for Numerical Methods in Engineering 60(1) (2004) 381–427

    Article  MATH  MathSciNet  Google Scholar 

  44. Bo., D., Gastaldi, L.: Stability and geometric conservation laws for ALE formulations. Computer Methods in Applied Mechanics and Engineering 193(42–44,) (2004) 4717–4739

    MathSciNet  Google Scholar 

  45. Farhat, C., Geuzaine, P.: Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids. Computer Methods in Applied Mechanics and Engineering 193 (2004) 4073–4095

    Article  MATH  MathSciNet  Google Scholar 

  46. Guillard, H., Farhat, C.: On the significance of the geometric conservation law for flow computations on moving meshes. Computer Methods in Applied Mechanics and Engineering 190 (2000) 1467–1482

    Article  MATH  MathSciNet  Google Scholar 

  47. Farhat, C., Geuzaine, P., Grandmont, C.: The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. Journal of Computational Physics 174 (2001) 669–694

    Article  MATH  MathSciNet  Google Scholar 

  48. Geuzaine, P., Grandmont, C., Farhat, C.: Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. Journal of Computational Physics 191 (2003) 206–227

    Article  MATH  Google Scholar 

  49. Koobus, B., Farhat, C.: Second-order time-accurate and geometrially conservative implicit schemes for flow computations on unstructured dynamic meshes. Computer Methods in Applied Mechanics and Engineering 170 (1999) 103–129

    Article  MATH  MathSciNet  Google Scholar 

  50. Förster, C., Wall, W.A., Ramm, E.: On the geometric conservation law in transient flow calculations on deforming domains. International Journal for Numerical Methods in Fluids, in press (2005)

    Google Scholar 

  51. Förster, C., Wall, W.A., Ramm, E.: Stabilized finite element formulation for incompressible flow on distorted meshes. in preparation (2005)

    Google Scholar 

  52. Wall, W.A., Förster, C., Mok, D.P., Ramm, E.: Aspects of robust finite element simulation strategies for flows with structural interactions. in preparation (2005)

    Google Scholar 

  53. Steger, J.L., Dougherty, F.C., Benek, J.A.: A Chimera grid scheme. In Ghia, K.N., Ghia, U., eds.: Advances in Grid Generation. Volume ASME FED-5. (1983) 59–69

    Google Scholar 

  54. Houzeaux, G., Codina, R.: A Chimera method based on a Dirichlet/Neumann(Robin) coupling for the Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering 192(31–32) (2003) 3343–3377

    Article  MATH  MathSciNet  Google Scholar 

  55. Meakin, R.L., Suhs, N.E.: Unsteady aerodynamic simulation of multiple bodies in relative motion. AIAA Paper 89–1996-CP (1989)

    Google Scholar 

  56. Wang, Z.J., Parthasarathy, V.: A fully automated Chimera methodology for multiple moving body problems. International Journal for Numerical Methods in Fluids 33(7) (2000) 919–938

    Article  MATH  Google Scholar 

  57. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45(5) (1999) 601–620

    Article  MATH  MathSciNet  Google Scholar 

  58. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46(1) (1999) 131–150

    Article  MATH  Google Scholar 

  59. Gravouil, A., Moës, N., Belytschko, T.: Non-planar 3D crack growth by the extended finite element and level sets - part ii: Level set update. International Journal for Numerical Methods in Engineering 53 (2002) 2569–2586

    Article  Google Scholar 

  60. Moes, N., Gravouil, A., Belytschko, T.: Non-planar 3-D crack growth by the extended finite element method and level sets, part i: Mechanical model. International Journal for Numerical Methods in Engineering 53(11) (2002) 2549–2568,

    Article  MATH  Google Scholar 

  61. Belytschko, T., Chen, H., Xu, J., Zi, G.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical Methods in Engineering 58(12) (2003) 1873–1905

    Article  MATH  Google Scholar 

  62. Chessa, J.: The Extended Finite Element Method for Free Surface and Two- Phase Flow Problems. PhD thesis, Northwestern University (2003)

    Google Scholar 

  63. Wagner, G.J., Ghosal, S., Liu, W.K.: Particulate flow simulations using lubrication theory solution enrichment. International Journal for Numerical Methods in Engineering 56(9) (2003) 1261–1289

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Wall1, W.A., Gerstenberger, A., Gamnitzer, P., Förster, C., Ramm, E. (2006). Large Deformation Fluid-Structure Interaction – Advances in ALE Methods and New Fixed Grid Approaches. In: Bungartz, HJ., Schäfer, M. (eds) Fluid-Structure Interaction. Lecture Notes in Computational Science and Engineering, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34596-5_9

Download citation

Publish with us

Policies and ethics