Skip to main content

Thin Solids for Fluid-Structure Interaction

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 53))

Abstract

In this contribution the use of hexahedral elements for the structural simulation in a fluid structure interaction framework is presented, resulting in a consistent kinematic and geometric description of the solid. In order to compensate the additional numerical effort of the three-dimensional approach, an anisotropic p-adaptive method for linear elastodynamic problems is proposed, resulting in a clearly higher efficiency and higher convergence rates than uniform p-extensions. Special emphasis is placed on the accurate transfer of loads considering the fluid discretization for computation of the surface load integrals. For a coupling with a cartesian grid based Lattice Boltzmann code it was found that oscillations in the interface tractions may excite higher structural modes possibly leading to a nonstable coupling behavior. A first remedy to this problem was a linear modal analysis of the structure, thus allowing to control the number of modes to be considered without disregarding bidirectional fluid structure interactions. Preliminary results are presented for the FSI benchmark configuration proposed in this book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Düster, A.: High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Technische Universität München, http://www.inf.bv.tum.de/~duester (2001)

    Google Scholar 

  2. Düster, A., Bröker, H., Rank, E.: The p-version of the finite element method for three-dimensional curved thin walled structures. International Journal for Numerical Methods in Engineering 52 (2001) 673–703

    Article  MATH  Google Scholar 

  3. Scholz, D., Düster, A., Rank, E.: Model-adaptive structural FEM computations for fluid-structure interaction. In: Proceedings of the Third M.I.T. Conference on Computational Fluid and Solid Mechanics, Cambridge, USA (2005)

    Google Scholar 

  4. Scholz, D., Rank, E., Glück, M., Breuer, M., Durst, F.: Fully three-dimensional coupling of fluid and thin-walled structures. In: High Performance Computing in Science and Engineering. Springer (2004)

    Google Scholar 

  5. Düster, A., Bröker, H., Heidkamp, H., Heißerer, U., Kollmannsberger, S., Krause, R., Muthler, A., Niggl, A., Nübel, V., Rücker, M., Scholz, D.: AdhoC 4 - User’s Guide. Lehrstuhl für Bauinformatik, Technische Universität München. (2004)

    Google Scholar 

  6. Brenk, M., Bungartz, H.J., Mehl, M., Neckel, T.: Fluid-Structure Interaction on Cartesian Grids: Flow Simulation and Coupling Interface. In Bungartz, H.J., Schäfer, M., eds.: Fluid-Structure Interaction: Modelling, Simulation, Optimisation. (Springer Verlag)

    Google Scholar 

  7. Geller, S., Tölke, J., Krafczyk, M., Scholz, D., Düster, A., Rank, E.: Simulation of bidirectional fluid-structure interaction based on explicit coupling approaches of Lattice Boltzmann and p-FEM solvers. In: Proceedings of the Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering, Santorini, Greece (2005)

    Google Scholar 

  8. Geller, S., Tölke, J., Krafczyk, M.: Lattice-Boltzmann Method on quadtree type grids for the Fluid-Structure-Interaction. In Bungartz, H.J., Schäfer, M., eds.: Fluid-Structure Interaction: Modelling, Simulation, Optimisation (LNCSESeries). Springer Verlag (2006)

    Google Scholar 

  9. Hron, J., Turek, S.: Proposal for numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow. In Bungartz, H.J., Schäfer, M., eds.: Fluid-Structure Interaction: Modelling, Simulation, Optimisation. (to appear in Springer’s LNCSE-Series))

    Google Scholar 

  10. Szabó, B., Babuška, I.: Finite element analysis. John Wiley&Sons (1991)

    Google Scholar 

  11. Szabó, B., Düster, A., Rank, E.: The p-version of the Finite Element Method. In Stein, E., de Borst, R., Hughes, T., eds.: Encyclopedia of Computational Mechanics. Volume 1. John Wiley&Sons (2004) 119–139

    Google Scholar 

  12. Gordon, W., Hall, C.: Construction of curvilinear co-ordinate systems and applications to mesh generation. International Journal for Numerical Methods in Engineering 7 (1973) 461–477

    Article  MATH  MathSciNet  Google Scholar 

  13. Gordon, W., Hall, C.: Transfinite element methods: Blending function interpolation over arbitrary curved element domains. Numerische Mathematik 21 (1973) 109–129

    Article  MATH  MathSciNet  Google Scholar 

  14. Királyfalvi, G., Szabó, B.: Quasi-regional mapping for the p-version of the finite element method. Finite Elements in Analysis and Design 27 (1997) 85–97

    Article  MATH  MathSciNet  Google Scholar 

  15. Piegl, L., Tiller, W.: The Nurbs Book. 2. edn. Springer-Verlag (1997)

    Google Scholar 

  16. Bröker, H.: Integration von geometrischer Modellierung und Berechnung nach der p-Version der FEM. PhD thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Technische Universität München (2001)

    Google Scholar 

  17. Chen, Q., Babuška, I.: Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Computer Methods in Applied Mechanics and Engineering 128 (1995) 405–417

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen, Q., Babuška, I.: The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron. Computer Methods in Applied Mechanics and Engineering 137 (1996) 89–94

    Article  MATH  MathSciNet  Google Scholar 

  19. Nübel, V.: Die adaptive rp-Methode für elastoplastische Probleme. PhD thesis, Lehrstuhl für Bauinformatik, Technische Universität München (2005)

    Google Scholar 

  20. Rank, E., Düster, A., Nübel, V., Preusch, K., Bruhns, O.: High order finite elements for shells. Computer Methods in Applied Mechanics and Engineering 194 (2005) 2494–2512

    Article  MATH  Google Scholar 

  21. Scordelis, A., Lo, K.: Computer analysis of cylindrical shells. Journal of the American Concrete Institute 61 (1969) 539–561

    Google Scholar 

  22. Düster, A., Scholz, D., Rank, E.: pq-Adaptive solid finite elements for threedimensional plates and shells. submitted to Computer Methods in Applied Mechanics and Engineering (2005)

    Google Scholar 

  23. Bathe, K.: Finite element procedures. Prentice Hall (1996)

    Google Scholar 

  24. Hulbert, G.: Computational structural dynamics. In Stein, E., de Borst, R., Hughes, T., eds.: Encyclopedia of Computational Mechanics. Volume 2. John Wiley&Sons (2004) 169–193

    Google Scholar 

  25. Newmark, N.: A numerical method for structural dynamics. Journal of Engineering Mechanics (ASCE) 85 (1959) 67–94

    Google Scholar 

  26. Hughes, T.: The finite element method. Dover Publications (2000)

    Google Scholar 

  27. Maute, A.: Fehlerkontrolle bei Finite-Element-Methoden in der linearen Strukturdynamik. Dissertation, Institut für Baustatik, Universität Stuttgart (2001)

    Google Scholar 

  28. Neumann, J.: Anwendung von adaptiven Finite Element Algorithmen auf Probleme der Strukturdynamik. Dissertation, Institut für Mechanik, Universität Karlsruhe (2004)

    Google Scholar 

  29. Wriggers, P.: Nichtlineare Finite-Element Methoden. Springer-Verlag (2001)

    Google Scholar 

  30. Cris.eld, M.: Non-linear finite element analysis of solids and structures, Volume 2. John Wiley&Sons (1997)

    Google Scholar 

  31. Heißerer, U.: Solution of the semidiscrete equations of structural dynamics by the generalized-alpha method and its implementation in a p-FEM code. Diploma thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieurwesen, TU-München (2001)

    Google Scholar 

  32. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-á method. Computer Methods in Applied Mechanics and Engineering 149 (1997) 33–48

    Article  MathSciNet  Google Scholar 

  33. Hilber, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering&Structural Dynamics 5 (1977) 283–292

    Article  Google Scholar 

  34. Wood, W., Bossak, M., Zienkiewicz, O.: An alpha modi.cation of Newmark’s method. International Journal for Numerical Methods in Engineering 5 (1981) 1562–1566

    MathSciNet  Google Scholar 

  35. Yosibash, Z., Kirby, R.: Dynamic response of various von-Kármán non-linear plate models and their 3-d counterparts. International Journal of Solids and Structures 42 (2004) 2517–2531

    Article  Google Scholar 

  36. Kirby, R., Yosibash, Z.: Solution of von-Kármán dynamic non-linear plate equations using a pseudo-spectral method. Computer Methods in Applied Mechanics and Engineering 193 (2004) 575–599

    Article  MATH  MathSciNet  Google Scholar 

  37. Li, X., Zeng, L., Wiberg, N.E.: A simple local error estimator and adaptive time-stepping procedure for direct integration method in dynamical analysis. Communications in Numerical Methods in Engineering 9 (1993) 273–292

    Article  MATH  Google Scholar 

  38. Riccius, J., Schweizerhof, K.: Aspects of hierarchical h-adaptive dynamic analyses. In Topping, B., ed.: Third International Conference on Computational Structures Technology, Budapest, Hungary, Civil-Comp Press (1996)

    Google Scholar 

  39. Wiberg, N.E., Li, X.: A postprocessing technique and an a-posteriori error estimate for the Newmark method in dynamic analysis. Earthquake Engineering&Structural Dynamics 22 (1993) 465–489

    Article  Google Scholar 

  40. Zienkiewicz, O., Xie, Y.: A simple error estimator and adaptive time stepping procedure for dynamic analysis. Earthquake Engineering&Structural Dynamics 20 (1991) 871–887

    Article  Google Scholar 

  41. Schwarz, H.: FORTRAN-Programme zur Methode der Finiten Elemente. 3. edn. B.G. Teubner (1991)

    Google Scholar 

  42. Schwarz, H.: Methode der finiten Elemente. 3. edn. B.G. Teubner (1991)

    Google Scholar 

  43. Rabold, A.: Vorbereitende Arbeiten zur Berechnung der Trittschalldämmung von Holzbalkendecken anhand der Finiten Elemente Methode. Diploma thesis, Lehrstuhl für Bauinformatik, TU München (2004)

    Google Scholar 

  44. Farhat, C., Lesoinne, M., Le Tallec, P.: Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering 157 (1998) 95–114

    Article  MATH  MathSciNet  Google Scholar 

  45. Flemisch, B., Kaltenbacher, M., Wohlmuth, B.: Elasto-Acoustic and Acoustic- Acoustic Coupling on Nonmatching Grids. Submitted to International Journal for Numerical Methods in Engineering (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Scholz, D., Kollmannsberger, S., Düster, A., Rank, E. (2006). Thin Solids for Fluid-Structure Interaction. In: Bungartz, HJ., Schäfer, M. (eds) Fluid-Structure Interaction. Lecture Notes in Computational Science and Engineering, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34596-5_12

Download citation

Publish with us

Policies and ethics