Skip to main content

A Precision Test of the Isotropy of the Speed of Light Using Rotating Cryogenic Optical Cavities

  • Chapter
Book cover Special Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 702))

  • 2041 Accesses

Abstract

A test of Lorentz invariance for electromagnetic waves was performed by comparing the resonance frequencies of two stable optical resonators as a function of orientation in space. The crystalline resonators were operated at 3.4K in a cryostat employing a pulse–tube refrigerator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Brillet and J.L. Hall. Improved laser test of the isotropy of space. Phys. Rev. Lett., 42:549, 1979.

    Article  ADS  Google Scholar 

  2. J.A. Lipa, J.A. Nissen, S. Wang, D.A. Stricker, and D. Avaloff. New limit on signals of Lorentz violation in electrodynamics. Phys. Rev. Lett., 90:060403, 2003.

    Article  ADS  Google Scholar 

  3. H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters. Modern Michelson-Morley experiment using cryogenic optical resonators. Phys. Rev. Lett., 91:020401, 2003.

    Article  Google Scholar 

  4. P. Wolf, S. Bize, A. Clairon, G. Santarelli, M.E. Tobar, and A.N. Luiten. Improved test of Lorentz invariance in electrodynamics. Phys. Rev. D, 70:051902(R), 2004.

    Article  ADS  Google Scholar 

  5. V.A. Kostelecký and M. Mewes. Signals for Lorentz violation in electrodynamics. Phys. Rev. D, 66:056005, 2002.

    Article  ADS  Google Scholar 

  6. V.A. Kostelecký and M. Mewes. Cosmological constraints on Lorentz violation in electrodynamics. Phys. Rev. Lett., 87:251304, 2001.

    Article  ADS  Google Scholar 

  7. R. Mansouri and R. Sexl. A test theory of special relativity: I. Simultaneity and clock synchronisation. Gen. Rel. and Grav., 8:497, 1977.

    Article  ADS  Google Scholar 

  8. P. Antonini, M. Okhapkin, E. Göklü, and S. Schiller. Test of constancy of speed of light with rotating cryogenic optical resonators. Phys. Rev. A, 71:050101(R), 2005.

    Article  ADS  Google Scholar 

  9. C. Braxmaier, H. Müller, O. Pradl, J. Mlynek, A. Peters, and S. Schiller. Test of relativity using a cryogenic optical resonator. Phys. Rev. Lett., 88:010401, 2002.

    Article  ADS  Google Scholar 

  10. C. Wang and et al. A two-stage pulse tube cooler operating below 4 k. Cryogenics, 37:159, 1997.

    Article  Google Scholar 

  11. C. Lienerth, G. Thummes, and C. Heiden. Progress in low noise cooling performance of a pulse-tube cooler for HT-SQUID operation. IEEE Trans. on Applied Superconductivity, 11:812, 2001.

    Article  Google Scholar 

  12. S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller. Cryogenic Optical Resonators: A new tool for laser frequency stabilization at the 1 hz level. Phys. Rev. Lett., 78:4741, 1997.

    Article  ADS  Google Scholar 

  13. R. Storz, C. Braxmaier, K. Jäck, O. Pradl, and S. Schiller. Ultrahigh long-term dimensional stability of a sapphire cryogenic optical resonator. Opt. Lett., 23:1031, 1998.

    Article  ADS  Google Scholar 

  14. H. Müller, C. Braxmaier, S. Hermann, O. Pradl, C. Lämmerzahl, J. Mlynek, S. Schiller, and A. Peters. Testing the foundation of relativity using cryogenic optical resonators. IJMPD, 11:1101, 2002.

    Article  ADS  Google Scholar 

  15. M. Lucht, M. Lerche, H.C. Wille, Y.V. Shvyd’ko, H.D. Rüter, E. Gerdau, and P. Becker. Precise measurement of the lattice parameters of α-Al2O3 in the temperature range 4.5–250 K using the Mössbauer wavelength standard. J. Appl. Cryst., 36:1075, 2003.

    Article  Google Scholar 

  16. R. Storz. PhD thesis, Universität Konstanz, Germany, 1998.

    Google Scholar 

  17. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, and H. Ward. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 31:97, 1983.

    Article  ADS  Google Scholar 

  18. G. Cantatore, F. Della Valle, E. Milotti, P. Pace, E. Zavattini, E. Polacco, F. Perrone, C. Rizzo, G. Zavattini, and G. Ruoso. Frequency locking of a Nd:YAG laser using the laser itself as the optical phase modulator. Rev. Sci. Instrum., 66:2785, 1994.

    Article  ADS  Google Scholar 

  19. P.L. Stanwix, M.E. Tobar, P. Wolf, M. Susli, C.R. Locke, E.N. Ivanov, J. Winter flood, and F. van Kann. Test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire microwave oscillators. Phys. Rev. Lett., 95:040404, 2005.

    Article  ADS  Google Scholar 

  20. S. Herrmann, A. Senger, E. Kovalchuk, H. Müller, and A. Peters. Test of the isotropy of the speed of light using a continuously rotating optical resonator. arXiv, physics:0508097, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Schiller, S., Antonini, P., Okhapkin, M. (2006). A Precision Test of the Isotropy of the Speed of Light Using Rotating Cryogenic Optical Cavities. In: Ehlers, J., Lämmerzahl, C. (eds) Special Relativity. Lecture Notes in Physics, vol 702. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34523-X_14

Download citation

Publish with us

Policies and ethics