Skip to main content

Resonance- and Chaos-Assisted Tunneling

  • Chapter

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 84))

Summary

We consider dynamical tunneling between two symmetry-related regular islands that are separated in phase space by a chaotic sea. Such tunneling processes are dominantly governed by nonlinear resonances, which induce a coupling mechanism between “regular” quantum states within and “chaotic” states outside the islands. By means of a random matrix ansatz for the chaotic part of the Hamiltonian, one can show that the corresponding coupling matrix element directly determines the level splitting between the symmetric and the antisymmetric eigenstates of the pair of islands. We show in detail how this matrix element can be expressed in terms of elementary classical quantities that are associated with the resonance. The validity of this theory is demonstrated with the kicked Harper model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Davis and E.J. Heller, J. Chem. Phys. 75, 246 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  2. W.K. Hensinger et al., Nature 412, 52 (2001).

    Article  ADS  Google Scholar 

  3. D.A. Steck, W.H. Oskay, and M.G. Raizen, Science 293, 274 (2001).

    Article  ADS  Google Scholar 

  4. S. Creagh, in Tunneling in Complex Systems, edited by S. Tomsovic (World Scientific, Singapore, 1998), p. 1.

    Google Scholar 

  5. L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon, Oxford, 1958).

    Google Scholar 

  6. This assumes, of course, that the double well potential V is analytic.

    Google Scholar 

  7. V.P. Maslov and M.V. Fedoriuk, Semiclassical Approximations in Quantum Mechanics (Reidel, Dordrecht, 1981).

    Google Scholar 

  8. S.C. Creagh, J. Phys. A 27, 4969 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. J.M. Greene and I.C. Percival, Physica 3D, 530 (1981).

    MathSciNet  ADS  Google Scholar 

  10. S.C. Creagh and M.D. Finn, J. Phys. A 34, 3791 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. M. Wilkinson, Physica 21D, 341 (1986).

    MathSciNet  ADS  Google Scholar 

  12. W.A. Lin and L.E. Ballentine, Phys. Rev. Lett. 65, 2927 (1990).

    Article  ADS  Google Scholar 

  13. O. Bohigas, D. Boosé, R. Egydio de Carvalho, and V. Marvulle, Nucl. Phys. A 560, 197 (1993).

    Article  ADS  Google Scholar 

  14. O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223, 43 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Tomsovic and D. Ullmo, Phys. Rev. E 50, 145 (1994).

    Article  ADS  Google Scholar 

  16. E. Doron and S.D. Frischat, Phys. Rev. Lett. 75, 3661 (1995).

    Article  ADS  Google Scholar 

  17. S.D. Frischat and E. Doron, Phys. Rev. E 57, 1421 (1998).

    Article  ADS  Google Scholar 

  18. F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991).

    Article  ADS  Google Scholar 

  19. V. Averbukh, S. Osovski, and N. Moiseyev, Phys. Rev. Lett. 89, 253201 (2002 89, 253201 (2002).

    Article  ADS  Google Scholar 

  20. F. Leyvraz and D. Ullmo, J. Phys. A 29, 2529 (1996).

    Article  MATH  ADS  Google Scholar 

  21. A. Mouchet et al., Phys. Rev. E 64, 016221 (2001).

    Article  ADS  Google Scholar 

  22. A. Mouchet and D. Delande, Phys. Rev. E 67, 046216 (2003).

    Article  ADS  Google Scholar 

  23. J. Zakrzewski, D. Delande, and A. Buchleitner, Phys. Rev. E 57, 1458 (1998).

    Article  ADS  Google Scholar 

  24. J.U. Nöckel and A.D. Stone, Nature 385, 45 (1997).

    Article  ADS  Google Scholar 

  25. C. Dembowski et al., Phys. Rev. Lett. 84, 867 (2000).

    Article  ADS  Google Scholar 

  26. R. Hofferbert et al., Phys. Rev. E 71, 046201 (2005).

    Article  ADS  Google Scholar 

  27. W.F. Miller and T.F. George, J. Chem. Phys. 56, 5668 (1972).

    Article  ADS  Google Scholar 

  28. A. Shudo and K.S. Ikeda, Phys. Rev. Lett. 74, 682 (1995).

    Article  ADS  Google Scholar 

  29. A. Shudo and K.S. Ikeda, Phys. Rev. Lett. 76, 4151 (1996).

    Article  ADS  Google Scholar 

  30. T. Onishi, A. Shudo, K.S. Ikeda, and K. Takahashi, Phys. Rev. E 64, 025201 (2001).

    Article  ADS  Google Scholar 

  31. K. Takahashi and K.S. Ikeda, J. Phys. A 36, 7953 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. K. Takahashi and K.S. Ikeda, Europhys. Lett. 71, 193 (2005).

    Article  ADS  Google Scholar 

  33. S.C. Creagh and N.D. Whelan, Phys. Rev. Lett. 77, 4975 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. S.C. Creagh and N.D. Whelan, Phys. Rev. Lett. 82, 5237 (1999).

    Article  ADS  Google Scholar 

  35. S.C. Creagh and N.D. Whelan, Ann. Phys. 272, 196 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. S.C. Creagh and N.D. Whelan, Phys. Rev. Lett. 84, 4084 (2000).

    Article  ADS  Google Scholar 

  37. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    MATH  Google Scholar 

  38. V.A. Podolskiy and E.E. Narimanov, Phys. Rev. Lett. 91, 263601 (2003).

    Article  ADS  Google Scholar 

  39. Handbook of Mathematical Functions, edited by M. Abramowitz and I. Stegun (Dover, New York, 1972).

    MATH  Google Scholar 

  40. V.A. Podolskiy and E.E. Narimanov, Opt. Lett. 30, 474 (2005).

    Article  ADS  Google Scholar 

  41. R. Roncaglia et al., Phys. Rev. Lett. 73, 802 (1994).

    Article  ADS  Google Scholar 

  42. A.M. Ozorio de Almeida, J. Phys. Chem. 88, 6139 (1984).

    Article  Google Scholar 

  43. T. Uzer, D.W. Noid, and R.A. Marcus, J. Chem. Phys. 79, 4412 (1983).

    Article  ADS  Google Scholar 

  44. L. Bonci, A. Farusi, P. Grigolini, and R. Roncaglia, Phys. Rev. E 58, 5689 (1998).

    Article  ADS  Google Scholar 

  45. O. Brodier, P. Schlagheck, and D. Ullmo, Phys. Rev. Lett. 87, 064101 (2001).

    Article  ADS  Google Scholar 

  46. O. Brodier, P. Schlagheck, and D. Ullmo, Ann. Phys. 300, 88 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. S. Keshavamurthy, J. Chem. Phys 122, 114109 (2005).

    Article  ADS  Google Scholar 

  48. S. Keshavamurthy, nlin.CD/0505020 (2005).

    Google Scholar 

  49. C. Eltschka and P. Schlagheck, Phys. Rev. Lett. 94, 014101 (2005).

    Article  ADS  Google Scholar 

  50. A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983).

    MATH  Google Scholar 

  51. This step involves, strictly speaking, another time-dependent canonical transformation \( (I,\vartheta ) \mapsto (\tilde I,\tilde \vartheta )\) which slightly modifies I and ϑ (see also P. Schlagheck, and D. Ullmo, Ann. Phys. 300, 88 (2002) [46]).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. P. Leboeuf, J. Kurchan, M. Feingold, and D.P. Arovas, Phys. Rev. Lett. 65, 3076 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. http://www.swox.com/gmp/.

    Google Scholar 

  54. Due to the internal symmetries of the kicked Harper, all r:s resonances with relative prime r, s and r being a multiple of 4 have 2r instead of r islands. To be consistent with (7.19), we name them 2r:2s resonances.

    Google Scholar 

  55. R.S. MacKay, J.D. Meiss, and I.C. Percival, Phys. Rev. Lett. 52, 697 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  56. J.D. Meiss and E. Ott, Phys. Rev. Lett. 55, 2742 (1985).

    Article  ADS  Google Scholar 

  57. T. Geisel, G. Radons, and J. Rubner, Phys. Rev. Lett. 57, 2883 (1986).

    Article  ADS  Google Scholar 

  58. N.T. Maitra and E.J. Heller, Phys. Rev. E 61, 3620 (2000).

    Article  ADS  Google Scholar 

  59. R. Ketzmerick, L. Hufnagel, F. Steinbach, and M. Weiss, Phys. Rev. Lett. 85, 1214 (2000).

    Article  ADS  Google Scholar 

  60. In the numerical evaluation of the expression (7.28), we took care that the admixture of the (rl)th excited state to the ground state may not exceed the upper limit 1, for all l = 1... (k − 1). The prominent peak at N ⋍ 500 in the lower panel of Fig. 7.5 is therefore rounded.

    Google Scholar 

  61. It should be noted that the annular billiard is exceptionally nongeneric insofar as it exhibits a coexistence of an exactly integrable dynamics in the regular islands with a mixed dynamics in the chaotic sea. Nonlinear classical resonances do therefore not at all manifest within the islands, which means that the central mechanism leading to dynamical tunneling between the islands might be completely different from the generic case.

    Google Scholar 

  62. S. Wimberger, P. Schlagheck, C. Eltschka, and A. Buchleitner, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlagheck, P., Eltschka, C., Ullmo, D. (2006). Resonance- and Chaos-Assisted Tunneling. In: Progress in Ultrafast Intense Laser Science Volume I. Springer Series in Chemical Physics, vol 84. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34422-5_7

Download citation

Publish with us

Policies and ethics