Skip to main content

Wieviele Primzahlen gibt es?

  • Chapter
  • 923 Accesses

Part of the book series: Springer-Lehrbuch ((SLB))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 1

  • 1878 Kummer, E.E. Neuer elementarer Beweis des Satzes, dass die Anzahl aller Primzahlen eine unendliche ist. Monatsber. Akad. d. Wiss., Berlin 1878/79, 777–778.

    Google Scholar 

  • 1890 Stieltjes, T.J. Sur la théorie des nombres. Étude bibliographique. Ann. Fac. Sci. Toulouse 4 (1890), 1–103.

    Google Scholar 

  • 1891 Hurwitz, A.Übungen zur Zahlentheorie 1891–1918 (Hrsg. H. Funk und B. Glaus). E.T.H., Zürich 1993.

    Google Scholar 

  • 1897 Thue, A. Mindre meddelelser II. Et bevis for at primtallenes antal er uendeligt. Arch. f. Math. og Naturv., Kristiania, 19, Nr. 4, 1897, 3–5. Nachdruck in Selected Mathematical Papers (Hrsg. T. Nagell, A. Selberg und S. Selberg), 31–32. Universitetsforlaget, Oslo 1977.

    Google Scholar 

  • 1924 Pólya, G. & Szegö, G.Aufgaben und Lehrsätze aus der Analysis, 2 Bände. Springer-Verlag, Berlin 1924 (4. Auflage 1970).

    Google Scholar 

  • 1947 Bellman, R. A note on relatively prime sequences. Bull. Amer. Math. Soc. 53 (1947), 778–779.

    MATH  MathSciNet  Google Scholar 

  • 1955 Furstenberg, H. On the infinitude of primes. Amer. Math. Monthly 62 (1955), S. 353.

    Article  MathSciNet  Google Scholar 

  • 1959 Golomb, S.W. A connected topology for the integers. Amer. Math. Monthly 66 (1959), 663–665.

    Article  MATH  MathSciNet  Google Scholar 

  • 1963 Mullin, A.A. Recursive function theory. Bull. Amer. Math. Soc. 69 (1963), S. 737.

    Article  MathSciNet  Google Scholar 

  • 1964 Edwards, A.W.F. Infinite coprime sequences. Math. Gazette 48 (1964), 416–422.

    MATH  Google Scholar 

  • 1967 Samuel, P.Théorie Algébrique des Nombres. Hermann, Paris 1967. Englische Übersetzung bei Houghton-Mifflin, Boston 1970.

    MATH  Google Scholar 

  • 1968 Cox, C.D. & van der Poorten, A.J. On a sequence of prime numbers. J. Austr. Math. Soc. 8 (1968), 571–574.

    Article  MATH  Google Scholar 

  • 1972 Borning, A. Some results for k! ± 1 and 1 and 2 · 3 · 5... p ± 1. Math. Comp. 26 (1972), 567–570.

    Article  MATH  MathSciNet  Google Scholar 

  • 1975 Guy, R.K. & Nowakowski, R Discovering primes with Euclid. Delta 5 (1975), 49–63.

    MATH  MathSciNet  Google Scholar 

  • 1980 Templer, M. On the primality of k!+1 and 2 * 3 * 5 *...* p+1. Math. Comp. 34 (1980), 303–304.

    Article  MATH  MathSciNet  Google Scholar 

  • 1980 Washington, L.C. The infinitude of primes via commutative algebra. Unveröffentlichtes Manuskript.

    Google Scholar 

  • 1982 Buhler, J.P., Crandall, R.E. & Penk, M.A. Primes of the form n! ± 1 and 2 · 3 · 5... p ± 1. Math. Comp. 38 (1982), 639–643.

    Article  MATH  MathSciNet  Google Scholar 

  • 1984 Naur, T. Mullin’s sequence of primes is not monotonic. Proc. Amer. Math. Soc. 90 (1984), 43–44.

    Article  MATH  MathSciNet  Google Scholar 

  • 1985 Odoni, R.W.K. On the prime divisors of the sequence wn+1 = 1 + w1w2... wn. J. London Math. Soc. (2) 32 (1985), 1–11.

    MATH  MathSciNet  Google Scholar 

  • 1987 Dubner, H. Factorial and primorial primes. J. Recr. Math. 19 (1987), 197–203.

    MATH  Google Scholar 

  • 1991 Shanks, D. Euclid’s primes. Bull. Inst. Comb. and Appl. 1 (1991), 33–36.

    MATH  MathSciNet  Google Scholar 

  • 1993 Caldwell, C. & Dubner, H. Primorial, factorial, and multifactorial primes. Math. Spectrum 26 (1993/94), 1–7.

    Google Scholar 

  • 1993 Wagstaff Jr., S.S. Computing Euclid’s primes. Bull. Inst. Comb. and Appl. 8 (1993), 23–32.

    MATH  MathSciNet  Google Scholar 

  • 1995 Caldwell, C. On the primality of n! ± 1 and 2 × 3 × 5 ×... × p ± 1. Math. Comp. 64 (1995), 889–890.

    Article  MATH  MathSciNet  Google Scholar 

  • 2000 Narkiewicz, W.The Development of Prime Number Theory. Springer-Verlag, Berlin 2000.

    MATH  Google Scholar 

  • 2002 Caldwell, C. & Gallot, Y. On the primality of n! ± 1 and 2 × 3 × 5 × ··· × p ± 1. Math. comp. 71 (2002), 441–448

    Article  MATH  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Wieviele Primzahlen gibt es?. In: Die Welt der Primzahlen. Springer-Lehrbuch. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34284-2_2

Download citation

Publish with us

Policies and ethics