Skip to main content

Spallation Reactions in Applied and Fundamental Research

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 700))

Abstract

Spallation reactions have recently gained new interest not only due to their application as neutron or radioactive nuclear beam sources but also for their implications in understanding cosmic ray abundances or investigating the dynamics of nuclear matter. The purpose of this lecture is to discuss the role of these reactions in different areas of interest, the modern experimental techniques currently being used for their investigation and finally some fundamental underlying physics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Rossi: Z. Phys. 82, 151 (1933)

    ADS  Google Scholar 

  2. D.H. Perkins: Nature 159, 126 (1947)

    ADS  Google Scholar 

  3. W.M. Brobeck et al.: Phys. Rev. 71, 449 (1947)

    ADS  Google Scholar 

  4. M.S. Livingston et al.: Rev. Sci. Intrum. 21, 7 (1950)

    ADS  Google Scholar 

  5. G. Bernardini, E.T. Booth and S.J. Lindenbaum: Phys. Rev. 85, 826 (1952)

    ADS  Google Scholar 

  6. P.R. O'Connor and G.T. Seaborg: Phys. Rev. 74, 1189 (1948)

    ADS  Google Scholar 

  7. V.L. Fitch, S.L. Meyer and P.A. Piroué: Phys. Rev. 126, 1849 (1962)

    ADS  Google Scholar 

  8. H. Dubost et al.: Phys. Rev. 136, 1618 (1964)

    ADS  Google Scholar 

  9. R. Klapisch et al.: Nucl. Instr. and Methods 53, 216 (1967)

    ADS  Google Scholar 

  10. B.N. Belyaev et al.: Nucl. Phys. A348, 479 (1980)

    ADS  Google Scholar 

  11. R. Serber: Phys. Rev. 72, 1114 (1947)

    ADS  Google Scholar 

  12. V.F. Weisskopf: Phys. Rev. 52, 295 (1937)

    MATH  ADS  Google Scholar 

  13. M.L. Goldberger: Phys. Rev. 74, 1269 (1948)

    ADS  Google Scholar 

  14. G. Bernardini, E.T. Booth and S.J. Lindenbaum: Phys. Rev. 88, 1017 (1952)

    ADS  Google Scholar 

  15. G.C. Morrison, H. Muirhead and W.G.V. Rosser: Phil Mag. 44, 1326 (1953)

    Google Scholar 

  16. H. McManus, W.T. Sharp and H. Gellman: Phys. Rev. 93, 924A (1954)

    Google Scholar 

  17. J.W. Meadows: Phys. Rev. 98, 744 (1955)

    ADS  Google Scholar 

  18. J.D. Jackson: Can. J. Phys. 35, 21 (1957)

    Google Scholar 

  19. N. Metropolis et al.: Phys. Rev. 110, 185 (1958)

    MathSciNet  ADS  Google Scholar 

  20. H. Bertini: Phys. Rev. 131, 1801 (1963)

    ADS  Google Scholar 

  21. J. Aichelin and X. Campi: Phys. Rev. C 34, 1643 (1986)

    ADS  Google Scholar 

  22. A.S. Hirsch et al.: Phys. Rev. C 29, 508 (1984)

    ADS  Google Scholar 

  23. C.J. Waddington and P.S. Freier: Phys. Rev. C 31, 888 (1985)

    ADS  Google Scholar 

  24. Y. Yariv and Z. Fraenkel: Phys. Rev. C 20, 2227, (1979)

    ADS  Google Scholar 

  25. J. Cugnon: Nucl. Phys. A 462, 751 (1987)

    ADS  Google Scholar 

  26. G.F. Bertsch and S. Das Gupta: Phys. Rep. 160, 190 (1988)

    ADS  Google Scholar 

  27. H. Feldmeier: Nucl. Phys. A 515, 417 (1990)

    Google Scholar 

  28. Review of the Spallation Neutron Source (SNS), DOE/ER-0705, 1997

    Google Scholar 

  29. G.S. Bauer: IAEA, Vienna, TECDOC-836, 96 (1995)

    Google Scholar 

  30. G.S. Bauer: Proceedings of the Second International Conference on Accelerator-Driven Transmutation Technologies, Kalmar, Sweden, 159 (1996) ISBN 91–506-1220–4

    Google Scholar 

  31. The Joint Project for High-Intensity Proton Accelerators, JAERI-Tech 99- 56

    Google Scholar 

  32. C.D. Bowman et al.: Nucl. Instrum. and Methods A 320, 336 (1992)

    ADS  Google Scholar 

  33. T. Takizuka et al.: “JAERI R&D on accelerator-based transmutation under OMEGA program”. In: Proc. Intern. Conf. On Accelerator-driven Transmutation Technologies and Applications, Las Vegas, USA, 1994, ed. by E.D. Arthur, A. Rodriguez, S.O. Schriber, AIP Conf. Proc. 346 (1995) pp. 64–73

    Google Scholar 

  34. C. Rubia et al.: preprint CERN/AT/95–44(ET), 1995

    Google Scholar 

  35. Proc. Sixth Intern. Conf. on Radioactive Nuclear Beams, Argonne, IL, USA, 2003, ed. by G. Savard, C.N. Davids, C.J. Lister, Nucl. Phys. A 748 (2005)

    Google Scholar 

  36. M.E. Wiedenbeck: ApJ. 523, L61–L64 (1999)

    ADS  Google Scholar 

  37. M. Huyse: The Why and How of Radioactive-Beam Research, Lect. Notes Phys. 651, 1–32 (2004)

    ADS  Google Scholar 

  38. H. Grawe: Shell Model from a Practitioner's Point of View, Lect. Notes Phys. 651, 33–76 (2004)

    ADS  Google Scholar 

  39. J. Al-Khalili: An Introduction to Halo Nuclei, Lect. Notes Phys. 651, 77–112 (2004)

    ADS  Google Scholar 

  40. Y. Suzuki, K. Ikeda and H. Sat: Prog. Theor. Phys. 83, 180 (1990)

    ADS  Google Scholar 

  41. E. Roeckl: Decay Studies of N≈Z Nuclei, Lect. Notes Phys. 651, 223–262 (2004)

    ADS  Google Scholar 

  42. K. Langanke, F.K. Thielemann and M. Wiescher: Nuclear Astrophysics and Nuclei Far from Stability, Lect. Notes Phys. 651, 383–468 (2004)

    ADS  Google Scholar 

  43. N. Severijns: Weak Interaction Studies by Precision Experiments in Beta Decay, Lect. Notes Phys. 651, 339–382 (2004)

    ADS  Google Scholar 

  44. B. De Vries et al.: Mat. Sci. Eng. B 105, 106 (2003)

    Google Scholar 

  45. W.K. Weyrather: Medical Applications of Accelerated Ions, Lect. Notes Phys. 651, 469–490 (2004)

    ADS  Google Scholar 

  46. J. Benlliure et al.: Nucl. Phys. A 660, 87 (1999)

    ADS  Google Scholar 

  47. P. Armbruster et al.: Phys. Rev. Lett. 93, 212701 (2004)

    ADS  Google Scholar 

  48. J. Benlliure et al.: “Reaction Mechanisms Involved in the Production of Neutron-Rich Isotopes”. In: Proc. Third Intern. Conf. on Fission and Properties of Neutron-Rich Nuclei, Sanibel, FL, USA, 2002, ed. by. J.H. Hamilton, A.V. Ramayya, H.K. Carter (World Scientific, Singapore 2003) pp. 400–407

    Google Scholar 

  49. M. Bernas et al.: Phys. Lett. B 331, 19 (1994)

    ADS  Google Scholar 

  50. M.V. Ricciardi et al.: Phys. Rev. C 73, 014607 (2006)

    ADS  Google Scholar 

  51. P. Napolitani et al.: Phys. Rev. C 70, 054607 (2004)

    ADS  Google Scholar 

  52. P. Van Duppen: Isotope Separation On Line and Post Acceleration; Lect. Notes Phys. 700, 37–76 (2006)

    Google Scholar 

  53. D.J. Morrissey and B.M. Sherrill: In-Flight Separation of Projectile Fragments, Lect. Notes Phys. 651, 113–134 (2004)

    ADS  Google Scholar 

  54. R.E. Prael et al.: Los Alamos National Laboratory, Report LA-UR-89–3014

    Google Scholar 

  55. L. Donadille et al.: J. Nucl. Sci. and Tech. 2, 1194 (2002)

    Google Scholar 

  56. D. Ridikas and W. Mittig: Nucl. Instr. and Methods A 414, 449 (1998)

    ADS  Google Scholar 

  57. A. Letourneau et al.: Nucl. Instr. and Methods B 170, 299 (2000)

    ADS  Google Scholar 

  58. B. Lott et al.: Nucl. Instr. and Methods A 414, 117 (1998)

    Google Scholar 

  59. D. Hilscher et al.: Nucl. Instr. and Methods A 414, 100 (1998)

    Google Scholar 

  60. F. Borne et al.: Nucl. Instr. and Methods A 385, 339 (1997)

    ADS  Google Scholar 

  61. E. Martinez et al.: Nucl. Instr. and Methods A 385, 345 (1997)

    ADS  Google Scholar 

  62. X. Ledoux et al.: Phys. Rev. Lett. 82, 4412 (1999)

    ADS  Google Scholar 

  63. M. Enke et al.: Nucl. Phys. A 657, 317 (1999)

    ADS  Google Scholar 

  64. R. Barna et al.: Nucl. Instr. and Methods 519, 610 (2004)

    ADS  Google Scholar 

  65. P. Napolitani: PhD Disertation, Univ. Paris V (2004)

    Google Scholar 

  66. W. Wlazlo et al.: Phys. Rev. Lett. 84, 5736 (2000)

    ADS  Google Scholar 

  67. T. Enqvist et al.: Nucl. Phys. A 686, 481 (2001)

    MathSciNet  ADS  Google Scholar 

  68. J. Benlliure et al.: Nucl. Phys. A 683, 513 (2001)

    ADS  Google Scholar 

  69. F. Rejmund et al.: Nucl. Phys. A 683, 540 (2001)

    ADS  Google Scholar 

  70. M. Bernas et al.: Nucl. Phys. A 725, 213 (2003)

    ADS  Google Scholar 

  71. J. Taieb et al.: Nucl. Phys. A 724, 413 (2003)

    ADS  Google Scholar 

  72. H. Geissel et al.: Nucl. Instr. and Methods B 70, 286 (1992)

    ADS  Google Scholar 

  73. A.R. Junghans et al.: Nucl. Phys. A 629, 635 (1998)

    ADS  Google Scholar 

  74. J. Benlliure et al.: Nucl. Phys. A 628, 458 (1998)

    ADS  Google Scholar 

  75. R. Michel et al.: Nucl. Instr. and Methods B 129, 153 (1997)

    ADS  Google Scholar 

  76. M. Gloris et al.: Nucl. Instr. and Methods A 463, 593 (2001)

    ADS  Google Scholar 

  77. Y.E. Titarenko et al.: Nucl. Instr. and Methods A 414, 73 (1998)

    Google Scholar 

  78. J.P. Meulders et al.: “High and Intermediate Energy Nuclear Data for Accelerator Driven Systems - The HINDAS Project”. In: Proc. Sixth Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Madrid, Spain, 2000 (AEN/NEA http://www. nea.fr/html/pt/docs/iem/madrid00/6iem.html)

    Google Scholar 

  79. C. Rubbia et al.: CERN/LHC/98–02(EET)

    Google Scholar 

  80. P. Bonche, S. Koonin and J. Negele: Phys. Rev. C 13, 226 (1976)

    ADS  Google Scholar 

  81. J.W. Negele: Rev. Mod. Phys. 54, 912 (1982)

    ADS  Google Scholar 

  82. S. Ayik and C. Grégoire: Phys. Lett. B 212, 269 (1988)

    ADS  Google Scholar 

  83. J. Randrup and B. Remaud: Nucl. Phys. A 514, 339 (1990)

    ADS  Google Scholar 

  84. J. Aichelin: Phys. Rep. 202, 233 (1991)

    ADS  Google Scholar 

  85. G. Peilert et al.: Phys. Rev. C 46, 1457 (1992)

    ADS  Google Scholar 

  86. J. Cugnon, C. Volant and S. Vuillier: Nucl. Phys. A 620, 475 (1997)

    ADS  Google Scholar 

  87. A. Boudard, J. Cugnon, S. Leray and C. Volant: Phys. Rev. C 66, 044615 (2002)

    ADS  Google Scholar 

  88. Y. Yariv and Z. Fraenkel: Phys. Rev. C 24, 488 (1981)

    ADS  Google Scholar 

  89. K. Chen et al.: Phys. Rev. 166, 949 (1968)

    ADS  Google Scholar 

  90. N. Bohr: Nature 137, 344 (1936)

    MATH  ADS  Google Scholar 

  91. V.F. Weisskopf and P.H. Ewing: Phys. Rev. 57, 472 (1940)

    ADS  Google Scholar 

  92. W. Hauser and H. Feshbach: Phys. Rev. 87, 366 (1952)

    MATH  ADS  Google Scholar 

  93. E. Gadioli and P.E. Hodgson: Pre-Equilibrium Nuclear Reactions, Chap. 3, Oxford University Press, (1992)

    Google Scholar 

  94. A.J. Cole: Statistical Models for Nuclear Decay, Institute of Physics Publishing, (2003)

    Google Scholar 

  95. L.G. Moretto: “Fission Probabilities in Lighter Nuclei, A theoretical and Experimental Investigation of the Shell and Pairing Effects in Fission Nuclei”. In: Third IAEA Symposium on the Physics and Chemistry of Fission, Vol. 1, Rochester, NY, USA 1973 (IAEA, Vienna 1974) pp. 329

    Google Scholar 

  96. J. Benlliure et al.: Eur. Phys. J. A 2, 193 (1998)

    ADS  Google Scholar 

  97. D.G. Sarantites and B.D. Pake: Nucl. Phys. A 93, 545 (1967)

    ADS  Google Scholar 

  98. P. Axel: Phys. Rev. 126, 271 (1962)

    ADS  Google Scholar 

  99. T. Ericson: Adv. Phys. 9, 425 (1960)

    ADS  Google Scholar 

  100. A.V. Ignatyuk: In: Nuclear Structure, Vol. 2, Proc. Conf. Structure of the Nucleus at the Dawn of the Century” Conf. on Structure of the Nucleus at the Dawn of the Century (Bologna 2000), Bologna, Italy, 2000, ed. by G.C. Bonsignori, M. Bruno, A. Ventura, D. Vretenar (World Scientific, Singapore 2001)

    Google Scholar 

  101. N. Bohr and J.A. Wheeler: Phys. Rev. 56, 426 (1939)

    MATH  ADS  Google Scholar 

  102. R. Vandenbosch and J.R. Huizenga, Nuclear Fission, Academic Press, New York (1973)

    Google Scholar 

  103. A.J. Sierk: Phys. Rev. C 33, 2039 (1986)

    ADS  Google Scholar 

  104. P. Möller et al.: At. Nucl. Data Tables 59, 185 (1995)

    ADS  Google Scholar 

  105. L.G. Moretto: Nucl. Phys. A 247, 211 (1975)

    ADS  Google Scholar 

  106. U. Brosa, S. Grossmann and A. Müller: Phys. Rep. 197, 167 (1990)

    ADS  Google Scholar 

  107. P. Fong: Phys. Rev. 102, 434 (1956)

    MATH  ADS  Google Scholar 

  108. B.D. Wilkins, E.P. Steinberg and R.R. Chasman: Phys. Rev. C 14, 1832 (1976)

    ADS  Google Scholar 

  109. H.A. Kramers: Physika VII 4, 284 (1940)

    MathSciNet  ADS  Google Scholar 

  110. L.G. Moretto: Phys. Lett. B 40, 185 (1972)

    ADS  Google Scholar 

  111. W. Swiatecki: LBL preprint 11403 (1980)

    Google Scholar 

  112. R.G. Stockstad: Treatise on Heavy Ion Science vol. 3, ed. D.A. Bromley (New York Plenum) 1985

    Google Scholar 

  113. J. Pochodzalla et al.: Phys. Rev. Lett. 75, 1040 (1995)

    ADS  Google Scholar 

  114. J.R. Huizenga and L.G. Moretto: Anu. Rev. Nucl. Part. Sci. 22, 553 (1972)

    Google Scholar 

  115. H. Bethe: Rev. Mod. Phys. 9, 69 (1937)

    MATH  ADS  Google Scholar 

  116. A. Bohr and B. Mottelson: Nuclear Structure, W. Benjamin INC, New York, Amsterdam, Vol. 2 (1974)

    Google Scholar 

  117. A.V. Ignatyuk et al.: Sov. J. Nucl. Phys. 21, 612 (1975)

    Google Scholar 

  118. A. Gilbert and A.G.W. Cameron: Can. J. Phys. 43, 1446 (1965)

    ADS  Google Scholar 

  119. M. Blann: Nucl. Phys. 80, 223 (1966)

    ADS  Google Scholar 

  120. F. Plasil: Phys. Rev. C 17, 823 (1978)

    ADS  Google Scholar 

  121. F. Pühlhofer: Nucl. Phys. A 280, 267 (1977)

    ADS  Google Scholar 

  122. I. Dostrovsky et al.: Phys. Rev. 118, 781 (1960)

    ADS  Google Scholar 

  123. S. Furihata: Nucl. Instr. and Methods B 171, 251 (2000)

    ADS  Google Scholar 

  124. R.J. Charity et al.: Nucl. Phys. A 483, 371 (1988)

    ADS  Google Scholar 

  125. A.J. Cole et al.: Nucl. Phys. A 341,284 (1980)

    ADS  Google Scholar 

  126. J. Gómez del Campo et al.: Phys. Rev. C 19, 2170 (1979)

    ADS  Google Scholar 

  127. A. Gavron: Phys. Rev. C 21, 230 (1980)

    ADS  Google Scholar 

  128. D. Hilscher and H. Rossner: Ann. Phys. Fr. 17, 471 (1992)

    ADS  Google Scholar 

  129. J. Randrup and S.E. Koonin: Nucl. Phys. A 356, 223 (1981)

    ADS  Google Scholar 

  130. M.V. Ricciardi et al.: Nucl. Phys. A 733, 299 (2004)

    ADS  Google Scholar 

  131. A.V. Ignatyuk, G.N. Smirenkin and A.S. Tishin: Sov. J. Nucl. Phys. 21, 485 (1975)

    Google Scholar 

  132. K.-H. Schmidt et al.: Z. Phys. A 308, 215 (1982)

    ADS  Google Scholar 

  133. A.V. Ignatyuk, K.K. Istekov and G.N. Smirenkin: Sov. J. Nucl. Phys. 29, 450 (1979)

    Google Scholar 

  134. A.V. Ignatyuk et al.: Sov. J. Nucl. Phys. 25, 13 (1977)

    Google Scholar 

  135. J. Pereira: PhD thesis, University of Santiago de Compostela, September 2004

    Google Scholar 

  136. S. Bjørnholm et al.: “Role of Symmetry of the Nuclear Shape in Rotational Contributions to Nuclear Level Densities”. In: Third IAEA Symposium on the Physics and Chemistry of Fission, Rochester, NY, USA 1973 (IAEA Vol. 1, Vienna 1974) pp. 367–373

    Google Scholar 

  137. P.G. Hansen and A.S. Jensen: Nucl. Phys. A 406, 236 (1983)

    ADS  Google Scholar 

  138. P. Grangé, L. Jun-Qing and H.A.Weidenmüller: Phys. Rev. C 27, 2063 (1983)

    ADS  Google Scholar 

  139. B. Jurado et al.: Nucl. Phys. A 747, 14 (2005)

    ADS  Google Scholar 

  140. B. Jurado et al.: Nucl. Phys. A 757, 329 (2005)

    ADS  Google Scholar 

  141. A. Gavron et al.: Phys. Rev. Lett. 57, 1255 (1981)

    ADS  Google Scholar 

  142. P. Paul and M. Thönnesen: Ann. Rev. Nucl. Part. Sci. 44, 65 (1994)

    ADS  Google Scholar 

  143. W.M. Gibson: Ann. Rev. Nucl. Sci. 25, 465 (1975)

    ADS  Google Scholar 

  144. J. Benlliure et al.: Nucl. Phys. A 700, 469 (2002)

    ADS  Google Scholar 

  145. B. Jurado et al.: Phys. Rev. Lett. 93, 072501 (2004)

    ADS  Google Scholar 

  146. D.H.E. Gross: Phys. Rep. 279, 119 (1997)

    ADS  Google Scholar 

  147. J.P. Bondorf et al.: Nucl. Phys. A 444, 460 (1985)

    ADS  Google Scholar 

  148. J. Richert and P. Wagner: Phys. Rep. 350, 1 (2001)

    MATH  ADS  Google Scholar 

  149. P. Chomaz, M. Colonna and J. Randrup: Phys. Rep. 389, 263 (2004)

    ADS  Google Scholar 

  150. L.N. Andronenko et al.: Phys. Lett. B 174, 1 (1986)

    Google Scholar 

  151. S.P. Avdeyev et al.: Eur. Phys. J. A 3, 75 (1998)

    ADS  Google Scholar 

  152. K.-H. Schmidt et al.: Nucl. Phys. A 710, 157 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Benlliure, J. (2006). Spallation Reactions in Applied and Fundamental Research. In: Al-Khalili, J., Roeckl, E. (eds) The Euroschool Lectures on Physics with Exotic Beams, Vol. II. Lecture Notes in Physics, vol 700. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-33787-3_5

Download citation

Publish with us

Policies and ethics