Skip to main content

Hereditary Properties of Ordered Graphs

  • Conference paper

Part of the book series: Algorithms and Combinatorics ((AC,volume 26))

Abstract

An ordered graph is a graph together with a linear order on its vertices. A hereditary property of ordered graphs is a collection of ordered graphs closed under taking order-preserving isomorphisms of the vertex set, and order-preserving induced subgraphs. If P is a hereditary property of ordered graphs, then P n denotes the collection \( \left\{ {G \in \mathcal{P}:V(G) = [n]} \right\} \), and the function \( n \mapsto \left| {\mathcal{P}_n } \right| \) is called the speed of P.

The possible speeds of a hereditary property of labelled graphs have been extensively studied (see [BBW00] and [Bol98] for example), and more recently hereditary properties of other combinatorial structures, such as oriented graphs ([AS00], [BBM06+c]), posets ([BBM06+a], [BGP99]), words ([BB05], [QZ04]) and permutations ([KK03], [MT04]), have also attracted attention. Properties of ordered graphs generalize properties of both labelled graphs and permutations.

In this paper we determine the possible speeds of a hereditary property of ordered graphs, up to the speed 2n−1. In particular, we prove that there exists a jump from polynomial speed to speed F n, the Fibonacci numbers, and that there exists an infinite sequence of subsequent jumps, from p(n)F n,k to F n,k+1 (where p(n) is a polynomial and F n,k are the generalized Fibonacci numbers) converging to 2n−1. Our results generalize a theorem of Kaiser and Klazar [KK03], who proved that the same jumps occur for hereditary properties of permutations.

The first author was supported during this research by OTKA grant T049398 and NSF grant DMS-0302804, the second by NSF grant ITR 0225610, and the third by a Van Vleet Memorial Doctoral Fellowship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. E. Alekseev, On the entropy values of hereditary classes of graphs, Discrete Math. Appl. 3 (1993), 191–199.

    Article  MathSciNet  Google Scholar 

  2. V. E. Alekseev, S.V. Sorochan, On the entropy of hereditary classes of oriented graphs, (Russian) International Conference DAOR 2000, Diskretn. Anal. Issled. Oper. Ser. 1 7 (2000), 20–28.

    MATH  MathSciNet  Google Scholar 

  3. R. Arratia, On the Stanley-Wilf conjecture for the number of permutations avoiding a given pattern, Electron. J. Combin., 6 (1999), 1, 4pp.

    MathSciNet  Google Scholar 

  4. J. Balogh and B. Bollobás, Hereditary properties of words, RAIRO Theoretical Informatics and Applications, Special Issue (Imre Simon), 39 (2005), 49–66.

    Article  MATH  Google Scholar 

  5. J. Balogh, B. Bollobás and R. Morris, Hereditary properties of combinatorial structures: posets and oriented graphs, submitted to J. Graph Theory.

    Google Scholar 

  6. J. Balogh, B. Bollobás and R. Morris, Hereditary properties of partitions, ordered graphs and ordered hypergraphs, to appear in a special edition of Europ. J. Combin., eds. B. Sudakov and M. Krivelevich.

    Google Scholar 

  7. J. Balogh, B. Bollobás and R. Morris, Hereditary properties of tournaments, in preparation.

    Google Scholar 

  8. J. Balogh, B. Bollobás and M. Simonovits, On the number of graphs without forbidden subgraph, J. Gombin. Theory Ser. B., 91 (2004), 1–24.

    Article  MATH  Google Scholar 

  9. J. Balogh, B. Bollobás, and D. Weinreich, The speed of hereditary properties of graphs, J. Gombin. Theory Ser. B, 79 (2000), 131–156.

    Article  MATH  Google Scholar 

  10. J. Balogh, B. Bollobás and D. Weinreich, A jump to the Bell number for hereditary graph properties, to appear in J. Combin. Theory Ser. B.

    Google Scholar 

  11. B. Bollobás, Hereditary properties of graphs: asymptotic enumeration, global structure, and colouring, in Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), Doc. Math. 1998, Extra Vol. III, 333–342 (electronic).

    Google Scholar 

  12. B. Bollobás and A. Thomason, Projections of bodies and hereditary properties of hypergraphs, Bull. London Math. Soc, 27 (1995) 417–424.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Bollobás and A. Thomason, Hereditary and monotone properties of graphs, “The mathematics of Paul Erdős, II” (R.L. Graham and J. Nešetřil, Editors), Alg. and Gombin., Vol. 14, Springer-Verlag, New York/Berlin (1997), 70–78.

    Google Scholar 

  14. M. Bóna, Combinatorics of permutations. With a foreword by Richard Stanley. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2004.

    Google Scholar 

  15. M. Bóona, The limit of a Stanley-Wilf sequence is not always rational and layered patterns beat monotone patterns, J. Gombin. Theory, 110 (2005), 223–235.

    Article  MathSciNet  Google Scholar 

  16. G. Brightwell, D. A. Grable and H. J. Prömel, Forbidden induced partial orders, Discrete Math., 201 (1999), 53–90.

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math., 2 (1964), 183–190.

    MathSciNet  Google Scholar 

  18. P. Erdős, P. Prankl and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs and Combin., 2 (1986), 113–121.

    Article  MathSciNet  Google Scholar 

  19. P. Erdős, D. J. Kleitman and B. L. Rothschild, Asymptotic enumeration of K n-free graphs, in Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Vol. II, pp. 19–27. Atti dei Convegni Lincei, 17, Accad. Naz. Lincei, Rome, 1976.

    Google Scholar 

  20. M. Fekete, Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koefiizienten, Math. Z., 17 (1923) 228–249.

    Article  MathSciNet  Google Scholar 

  21. C. Hundack, H. J. Prömel and A. Steger, Extremal graph problems for graphs with a color-critical vertex. Combin. Probab. Comput., 2 (1993), 465–477.

    Article  MathSciNet  Google Scholar 

  22. T. Kaiser and M. Klazar, On growth rates of hereditary permutation classes, Electr. J. Combinatorics, 9(2) (2003), 20pp.

    Google Scholar 

  23. M. Klazar, The Füredi-Hajnal conjecture implies the Stanley-Wilf conjecture, Formal Power Series and Algebraic Combinatorics (D. Krob, A. A. Mikhalev and A. V. Mikhalev, eds.), Springer, Berlin, (2000), 250–255.

    Google Scholar 

  24. M. Klazar and A. Marcus, Extensions of the linear bound in the Füredi-Hajnal conjecture, preprint.

    Google Scholar 

  25. Ph. G. Kolaitis, H. J. Prömel and B. L. Rothschild, K l+1-free graphs: asymptotic structure and a 0–1 law, Trans. Amer. Math. Soc, 303 (1987), 637–671.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Marcus and G. Tardos, Excluded permutation matrices and the Stanley-Wilf conjecture, J. Combin. Theory Ser. A, 107 (2004), 153–160.

    Article  MATH  MathSciNet  Google Scholar 

  27. H. J. Prömel and A. Steger, Excluding induced subgraphs III., A general asymptotic, Random Structures Algorithms, 3 (1992), 19–31.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. J. Prömel and A. Steger, On the asymptotic structure of sparse triangle free graphs, J. Graph Theory, 21 (1996), 137–151.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. J. Prömel and A. Steger, Counting H-free graphs, Discrete Math., 154 (1996), 311–315.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Quas and L. Zamboni, Periodicity and local complexity, Theoret. Comput. Sci., 319 (2004), 229–240.

    Article  MATH  MathSciNet  Google Scholar 

  31. E. R. Scheinerman and J. Zito, On the size of hereditary classes of graphs, J. Combin. Theory Ser. B, 61 (1994), 16–39.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balogh, J., Bollobás, B., Morris, R. (2006). Hereditary Properties of Ordered Graphs. In: Klazar, M., Kratochvíl, J., Loebl, M., Matoušek, J., Valtr, P., Thomas, R. (eds) Topics in Discrete Mathematics. Algorithms and Combinatorics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33700-8_12

Download citation

Publish with us

Policies and ethics