Skip to main content

Isolation Procedures for Endophytic Microorganisms

  • Chapter
Microbial Root Endophytes

Part of the book series: Soil Biology ((SOILBIOL,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlich K, Sieber T (1996) The profusion of dark septate endophytic fungi in nonectomycorrhizal fine roots of forest trees and shrubs. New Phytol 132:259–270

    Article  Google Scholar 

  • Araújo WL, Maccheroni W, Aguilar-Vildoso CI, Barroso PAV, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissue of citrus rootstocks. Can J Microbiol 47:229–236

    Article  PubMed  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W, Van Elsas JD, Van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonisation by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398

    Article  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    CAS  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed  CAS  Google Scholar 

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology and evolution. APS Press, St. Paul, MN, pp 31–65

    Google Scholar 

  • Borneman J (1999) Culture-independent identification of microorganisms that respond to specified stimuli. Appl Environ Microbiol 65:3398–3400

    PubMed  CAS  Google Scholar 

  • Boyle C, Götz M, Dammann-Tugend U, Schulz B (2001) Endophyte-host interactions III. Local vs. systemic colonisation. Symbiosis 31:259–281

    Google Scholar 

  • Bridge PD, Roberts PJ, Spooner BM, Panchal G (2003) On the unreliability of published DNA sequences. New Phytol 160:43–48

    Article  CAS  Google Scholar 

  • Cao LX, You JL, Zhou SN (2002) Endophytic fungi from Musa acuminata leaves and roots in South China. World J Microbiol Biotechnol 18:169–171

    Article  Google Scholar 

  • Carroll GC (1995) Forest endophytes: pattern and process. Can J Bot 73(S1):1316–1324

    Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:85–92

    Google Scholar 

  • Cohen SD (1999) Technique for large scale isolation of Discula umbrinella and other foliar endophytic fungi from Quercus species. Mycologia 91:917–922

    Article  Google Scholar 

  • Coombs JT, Franco CMM (2003a) Isolation and identification of actinobacteria from surfacesterilised wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  PubMed  CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003b) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69:4260–4262

    Article  PubMed  CAS  Google Scholar 

  • Crous PW, Petrini O, Marais GF, Pretorius ZA, Rehder F (1995) Occurrence of fungal endophytes in cultivars of Triticum aestivum in South Africa. Mycoscience 36:739–752

    Article  Google Scholar 

  • DeWit PJGM, Spikman G (1982) Evidence for the occurrence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions of Cladosporium fulvum and tomato. Physiol Plant Pathol 21:1–11

    Article  Google Scholar 

  • Dong Z, Canny MJ, McCully MW, Roboredo MR, Cabadilla CF, Ortega E, Rodés R (1994) A nitrogen-fixing endophyte of sugarcane stems. Plant Physiol 105:1139–1147

    PubMed  CAS  Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential, Butterworth-Heinemann, Stoneham, MA, pp 49–80

    Google Scholar 

  • Elvira-Recuenco M, Vuurde van JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46:1036–1041

    Article  PubMed  CAS  Google Scholar 

  • Fisher PJ, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 120:137–143

    Article  Google Scholar 

  • Gagné S, Richard C, Rousseau H, Antoun H (1987) Xylem-residing bacteria in alfalfa roots. Can J Microbiol 33:996–1005

    Google Scholar 

  • Garbeva P, van Overbeek LS, van Vuurde JWL, van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41:369–383

    PubMed  CAS  Google Scholar 

  • Gardner JM, Feldman AW, Zablotowicz RM (1982) Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 43:1335–1342

    PubMed  Google Scholar 

  • Griffith RI, Whitely AS, O’Donell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  Google Scholar 

  • Görke C (1998) Mykozönosen von Wurzeln und Stamm von Jungbäumen unterschiedlicher Bestandsbegründungen. Bibl Mycol 173:1–462

    Google Scholar 

  • Hallmann J, Sikora RA (1994) Occurrence of plant parasitic nematodes and non-pathogenic species of Fusarium in tomato plants in Kenya and their role as mutualistic synergists for biological control of root-knot nematodes. Int J Pest Manage 40:321–325

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997a) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    CAS  Google Scholar 

  • Hallmann J, Kloepper JW, RodrÍguez-Kábana R (1997b) Application of the Scholander pressure bomb to studies on endophytic bacteria of plants. Can J Microbiol 43:411–416

    CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, RodrÍguez-Kábana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937

    Article  CAS  Google Scholar 

  • Hambleton S, Currah RS (1997) Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot 75:1570

    Google Scholar 

  • Hartmann A, Chatzinotas A, Assmus B, Kirchhof G (2000) Molecular microbial ecology studies on diazotrophic bacteria associated with non-legumes with special reference to endophytic diazotrophs. In: Subba Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry, vol II. Science, Enfield, pp 1–14

    Google Scholar 

  • Heuer H, Smalla K (1997) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities. In: van Elsas JD, Wellington EMH, Trevors JT (eds) Modern soilmicrobiology. Dekker, New York, pp 353–373

    Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    PubMed  CAS  Google Scholar 

  • Holdenrieder O, Sieber T (1992) Fungal associations of serially washed healthy nonmycorrhizal roots of Picea abies. Mycol Res 96:151–156

    Google Scholar 

  • Hollis JP (1951) Bacteria in healthy potato tissue. Phytopathology 41:350–367

    Google Scholar 

  • Kattner D, Schönhar S (1990) Untersuchungen über das Vorkommenmikroskopischer Pilze in Feinwurzeln optisch gesunder Fichten (Picea abies Karst.) auf verschiedenen Standorten. Mitt Ver Forstl Standortskde Forstpflanzenzücht 35:39–43

    Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Kowalchuk GA, Gerards S, Woldendorp JW (1997) Detection and characterisation of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18S rDNA. Appl Environ Microbiol 63:3858–3865

    PubMed  CAS  Google Scholar 

  • Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786

    Article  PubMed  CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterisation of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb Ecol 34:210–223

    Article  PubMed  Google Scholar 

  • Maifeld D (1998) Endophytische Pilze der Fichte (Picea abies (L.) Karst.) — Neue Aspekte zur biologischen Kontrolle von Heterobasidion annosum (FR.) Bref. PhD dissertation, Eberhard-Karls-Universität Tübingen, Germany

    Google Scholar 

  • Martinez-Inigo MJ, Lboe MC, Garbi C, Martin M (2003) Applicability of fluorescence in situ hybridisation to monitor target bacteria in soil samples. In: Del Re AAM, Capri E, Padovani L, Trevisan M (eds) Pesticides in air, plant, soil and water system. Proceedings of the XII Symposium Pesticide Chemistry, Piacenza, Italy, 4–6 June 2003, pp 609–615

    Google Scholar 

  • McInroy JA, Kloepper JW (1994) Studies on indigenous endophytic bacteria of sweet corn and cotton. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. VCH, Weinheim, Germany, pp 19–28

    Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  CAS  Google Scholar 

  • Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808–811

    Google Scholar 

  • Musson G, McInroy JA, Kloepper JW (1995) Development of delivery systems for introducing endophytic bacteria into cotton. Biocontrol Sci Technol 5:407–416

    Article  Google Scholar 

  • Newell SY, Arsuffi TL, Fallon RD (1988) Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl Environ Microbiol 54: 1876–1879

    PubMed  CAS  Google Scholar 

  • Nikolcheva LC, Bärlocher F (2005) Seasonal and substrate preferences of fungi colonizing leaves in streams: traditional versus molecular evidence. Environ Microbiol 7:270–80

    Article  PubMed  CAS  Google Scholar 

  • Nikolcheva LC, Cockshutt AM, Bärlocher F (2003) Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches. Appl Environ Microbiol 69:2548–54

    Article  PubMed  CAS  Google Scholar 

  • Oberholzer-Tschütscher B (1982) Untersuchungen über endophytische Pilze von Erica carnea L. PhD dissertation, Swiss Federal Institute of Technology, Zürich, Switzerland

    Google Scholar 

  • O’Dell TE, Trappe JM (1992) Root colonisation of Lupinus latifolius Agardhl and Pinus contorta Dougl. by Phialocephala fortinii Wang & Wilcox. New Phytol 124:93–100

    Article  Google Scholar 

  • Oliveira AC, Vallim MA (2002) Quantification of Xylella fastidiosa from citrus trees by real-time polymerase chain reaction assay. Phytopathology 92:1048–1054

    Article  PubMed  Google Scholar 

  • Olsson S, Persson P (1999) The composition of bacterial populations in soil fractions differing in their degree of adherence to barley roots. Appl Soil Ecol 12:205–215

    Article  Google Scholar 

  • Olsson PA, Larsson L, Bago B, Wallander H, van Aarle IM (2003) Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytol 159:1–10

    Article  Google Scholar 

  • Patriquin DG, Döbereiner J (1978) Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can J Microbiol 24:734–742

    PubMed  CAS  Google Scholar 

  • Petersen CA, Emanuel ME, Humphreys GB (1981) Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays) and broad bean (Vicia faba). Can J Bot 59:618–625

    Google Scholar 

  • Petrini O (1984) Endophytic fungi in British Ericaceae. Trans Br Mycol Soc 83:510–512

    Google Scholar 

  • Petrini O, Fisher PJ, Petrini LE (1992) Fungal endophytes of bracken (Pteridium aquilinum), with some reflections on their use in biological control. Sydowia 44:282–293

    Google Scholar 

  • Pleban S, Ingel F, Chet I (1995) Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. Eur J Plant Pathol 101:665–672

    Article  Google Scholar 

  • Philipseon MN, Blair ID (1957) Bacteria in clover root tissue. Can J Microbiol 3:125–129

    Google Scholar 

  • Quadt-Hallmann A, Hallmann J, Kloepper JW (1997) Bacterial endophytes in cotton: location and interaction with other plant-associated bacteria. Can J Microbiol 43:254–259

    Article  CAS  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    PubMed  CAS  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  PubMed  CAS  Google Scholar 

  • Salles JF, De Souza FA, van Elsas JD (2001) Molecular method to assess the diversity of Burkholderia species in environmental samples. Appl Environ Microbiol 68:1595–1603

    Article  CAS  Google Scholar 

  • Sardi P, Sarachhi M, Quaroni S, Petrolini B, Borgonovi GE, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilised roots. Appl Environ Microbiol 58:2691–2693

    PubMed  Google Scholar 

  • Schena L, Nigro F, Ippolito A, Gallitelli D (2004) Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. Eur J Plant Pathol 110:893–908

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–687

    Article  PubMed  Google Scholar 

  • Schulz B, Wanke U, Draeger S, Aust H-J (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilisation methods. Mycol Res 97:1447–1450

    Article  Google Scholar 

  • Schulz B, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Döring D (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99:1007–1015

    CAS  Google Scholar 

  • Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte-host interactions II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  CAS  PubMed  Google Scholar 

  • Shishido M, Loeb BM, Chanway CP (1995) External and internal root colonisation of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can J Microbiol 41:707–713

    Article  CAS  Google Scholar 

  • Sieber TN (2002) Fungal root endophytes. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Dekker, New York, pp 887–917

    Google Scholar 

  • Sieber TN, Riesen TK, Müller E, Fried PM (1988) Endophytic fungi in four wheat cultivars (Triticum aestivum L.) differing in resistance against Stagonospora nodorum (Berk.) Berk. J Phytopathol 122:289–306

    Google Scholar 

  • Skipp RA, Christensen MJ (1989) Fungi invading roots of perennial rye grass (Lolium perenne L.) in pasture. N J Agric Res 32:423–431

    Google Scholar 

  • Smalla K (2004) Culture-independent microbiology. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington DC, pp 88–99

    Google Scholar 

  • Sriskandarajah S, Kennedy IR, Yu DG, Tchan YT (1993) Effects of plant growth regulators on acetylene-reducing associations between Azospirillum brasilense and wheat. Plant Soil 153:165–178

    Article  CAS  Google Scholar 

  • Stone JK (1987) Initiation and development of latent infections by Rhabdocline parkeri on Douglas-fir. Can J Bot 65:2614–2621

    Google Scholar 

  • Stoyke G, Currah RS (1991) Endophytic fungi from the mycorrhizae of alpine ericoid plants. Can J Bot 69:347–352

    Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263

    Article  CAS  Google Scholar 

  • Tiedemann A von, Wolf G, Wilbert S (1983) Eine einfache Methode zur gezielten Isolierung von gefäßbesiedelnden Mikroorganismen aus holzigen Pflanzen. Phytopathol Z 107:87–91

    Google Scholar 

  • Tsao PH (1970) Selective media for isolation of pathogenic fungi. Annu Rev Phytopathol 8:157–186

    Article  Google Scholar 

  • Vaitilingom M, Gendre F, Brignon P (1998) Direct detection of viable bacteria, molds, and yeasts by reverse transcriptase PCR in contaminated milk samples after heat treatment. Appl Environ Microbiol 64:1157–1160

    PubMed  CAS  Google Scholar 

  • Vossbrinck CG, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CG (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414

    Article  PubMed  CAS  Google Scholar 

  • Werner C, Petrini O, Hesse M (1997) Degradation of the polyamine alkaloid aphelandrine by endophytic fungi isolated from Aphelandra tetragona. FEMS Microbiol Lett 155:147–153

    Article  PubMed  CAS  Google Scholar 

  • Weete JD, Ghandi SR (1996) Biochemistry and molecular biology of fungal sterols. In: Brambl R, Marzluf G (eds) The Mycota III: Biochemistry and molecular biology. Springer, Berlin Heidelberg New York, pp 421–438

    Google Scholar 

  • Winton LM, Stone JK, Watrud LS, Hansen EM (2002) Simultaneous one-tube quantification of host and pathogen DNA with real-time polymerase chain reaction. Phytopathology 92:112–116

    Article  CAS  PubMed  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterisation of endophytic colonising bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed  CAS  Google Scholar 

  • Zuccaro A, Schulz B, Mitchell J (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hallmann, J., Berg, G., Schulz, B. (2006). Isolation Procedures for Endophytic Microorganisms. In: Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N. (eds) Microbial Root Endophytes. Soil Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33526-9_17

Download citation

Publish with us

Policies and ethics