Skip to main content

The Role of Extracellular Heat Shock Proteins in Cellular Inflammation and Injury

  • Conference paper
  • 655 Accesses

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2006))

Conclusions

The heat shock, or stress response is an ancient, highly conserved, primitive endogenous cellular defense mechanism. Traditionally, stress proteins, e.g. HSP70, have been considered to be exclusively intracellular proteins. However, increasing evidence supports a role for extracellular stress proteins, including HSP70, in the innate and acquired immune response. For example, stress proteins have been reported to stimulate the immune system via innate receptors, such as the TLR. Recent data, however, challenge this notion by claiming that it is the bacterial molecules that are trapped by the stress proteins, and not the stress proteins themselves that activate the immune system. In this brief review, we have presented evidence to suggest that stress proteins are indeed modulators of immune function. Whether activation of the immune response by extracellular stress proteins such as HSP70 serves a cytoprotective function, a pro-inflammatory function, or both, depending on context, remains to be determined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  2. Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98

    Article  CAS  PubMed  Google Scholar 

  3. Wong HR, Wispe JR (1997) The stress response and the lung. Am J Physiol 273:L1–L9

    CAS  PubMed  Google Scholar 

  4. Wheeler DS, Wong HR (2004) The heat shock response and transplantation immunology. In: Wilkes DS, Burlingham WJ (eds) Immunobiology of Organ Transplantation. Kluwer Academic/Plenum Publishers, New York, pp 525–543

    Google Scholar 

  5. Gerner EW, Schneider MJ (1975) Induced thermal resistance in HeLa cells. Nature 256:500–502

    Article  CAS  PubMed  Google Scholar 

  6. Hasday JD, Singh IS (2000) Fever and the heat shock response: distinct, partially overlapping processes. Cell Stress Chaperones 5:471–480

    Article  CAS  PubMed  Google Scholar 

  7. Wheeler DS, Fisher LE Jr, Catravas JD, Jacobs BR, Carcillo JA, Wong HR (2005) Extracellular HSP70 levels in children with septic shock. Pediatr Crit Care Med 6:308–311

    Article  PubMed  Google Scholar 

  8. Quintana FJ, Cohen IR (2005) Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 175:2777–2782

    CAS  PubMed  Google Scholar 

  9. Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:57–266

    Article  Google Scholar 

  10. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases HSP, which deliver a partial maturation signal to dendritic cells and activate the NF-kappaB pathway. Int Immunol 12:1539–1546

    Article  CAS  PubMed  Google Scholar 

  11. Todryk S, Melcher AA, Hardwick N, et al (1999) Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol 163:1398–1408

    CAS  PubMed  Google Scholar 

  12. Barreto A, Gonzalez JM, Kabingu E, Asea A, Fiorentino S (2003) Stress-induced release of HSC70 from human tumors. Cell Immunol 222:97–104

    Article  CAS  PubMed  Google Scholar 

  13. Febbraio MA, Steensberg A, Walsh R, et al (2002) Reduced glycogen availability is associated with an elevation in HSP72 in contracting skeletal muscle. J Physiol 538:911–917

    Article  CAS  PubMed  Google Scholar 

  14. Lancaster GI, Moller K, Nielsen B, Secher NH, Febbraio MA, Nybo L (2004) Exercise induces the release of heat shock protein 72 from the brain in vivo. Cell Stress Chaperones 9:276–280

    Article  CAS  PubMed  Google Scholar 

  15. Ernani FP, Teale JM (1993) Release of stress proteins from Mesocestoides corti is a brefeldin A-inhibitable process: evidence for active export of stress proteins. Infect Immun 61:2596–2601

    CAS  PubMed  Google Scholar 

  16. Guzhova I, Kislyakova K, Moskaliova O, et al (2001) In vitro studies show that HSP70 can be released by glia and that exogenous HSP70 can enhance neuronal stress tolerance. Brain Res 914:66–73

    Article  CAS  PubMed  Google Scholar 

  17. Hunter-Lavin C, Davies EL, Bacelar MMFVG, Marshall MJ, Andrew SM, Williams JHH (2004) HSP70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun 324:511–517

    Article  CAS  PubMed  Google Scholar 

  18. Chimini G, Rubartelli A (2005) Novel pathways of protein secretion. In: Henderson B, Pockley AG (eds) Molecular Chaperones and Cell Signaling. Cambridge University Press, New York, pp 45–60

    Chapter  Google Scholar 

  19. Bausero M, Gastpar R, Multhoff G, Asea A (2005) Alternative mechanism by which IFN-gamma enhances tumor recognition: Active release of heat shock protein 72. J Immunol 175:2900–2912

    CAS  PubMed  Google Scholar 

  20. Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: A novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    Article  CAS  PubMed  Google Scholar 

  21. Matzinger P (1998) An innate sense of danger. Semin Immunol 10:399–415

    Article  CAS  PubMed  Google Scholar 

  22. Anderson KM, Srivastava PK (2000) Heat, heat shock, HSP and death: A central link in innate and adaptive immune responses. Immunol Lett 74:35–39

    Article  CAS  PubMed  Google Scholar 

  23. Asea A, Kraeft SK, Kurt-Jones EA, et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  CAS  PubMed  Google Scholar 

  24. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034

    Article  CAS  PubMed  Google Scholar 

  25. Asea A (2003) Chaperokine-induced signal transduction pathways. Exerc Immunol Rev 9:25–33

    PubMed  Google Scholar 

  26. Asea A, Kabingu E, Stevenson MA, Calderwood SK (2000) HSP70 peptide-bearing and peptide-negative preparations act as chaperokines. Cell Stress Chaperones 5:425–431

    Article  CAS  PubMed  Google Scholar 

  27. Tsan M-F, Gao B (2004) Endogenous ligans of Toll-like receptors. J Leukoc Biol 76:514–519

    Article  CAS  PubMed  Google Scholar 

  28. Calderwood SK, Theriault JR, Gong J (2005) Message in a bottle: Role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol 35:2518–2527

    Article  CAS  PubMed  Google Scholar 

  29. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476

    Article  CAS  PubMed  Google Scholar 

  30. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/Interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  CAS  PubMed  Google Scholar 

  31. Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 168:2997–3003

    CAS  PubMed  Google Scholar 

  32. Prohaszka Z, Singh M, Nagy K, et al (2002) Heat shock protein 70 is a potent activator of the human complement system. Cell Stress Chaperones 7:17–22

    Article  CAS  PubMed  Google Scholar 

  33. Radsak MP, Hilf N, Singh-Jasuja H, et al (2003) The heat shock protein Gp96 binds to human neutrophils and monocytes and stimulates effector functions. Blood 101:2810–2815

    Article  CAS  PubMed  Google Scholar 

  34. Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum HSP72 in humans. Cell Stress Chaperones 6:386–393

    Article  CAS  PubMed  Google Scholar 

  35. Febbraio MA, Ott P, Nielsen HB, et al (2002) Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol 544:957–962

    Article  CAS  PubMed  Google Scholar 

  36. Campisi J, Fleshner M (2003) Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. J Appl Physiol 94:43–52

    CAS  PubMed  Google Scholar 

  37. Banfi G, Dolci A, Verna R, Corsi MM (2004) Exercise raises serum heat-shock protein 70 (HSP70) levels. Clin Chem Lab Med 42:1445–1446

    Article  CAS  PubMed  Google Scholar 

  38. Sharma M, Ganguly NK, Chaturvedi G, Thingnam SKS, Majumdar S, Suri RK (2003) A possible role of HSP70 in mediating cardioprotection in patients undergoing CABG. Mol Cell Biochem 247:31–36

    Article  CAS  PubMed  Google Scholar 

  39. Dybdahl B, Wahba A, Haaverstad R, et al (2004) On-pump versus off-pump coronary artery bypass grafting: more heat-shock protein 70 is released after on-pump surgery. Eur J Cardiothorac Surg 25:985–992

    Article  PubMed  Google Scholar 

  40. Kimura F, Itoh H, Ambiru S, et al (2004) Circulating heat-shock protein 70 is associated with postoperative infection and organ dysfunction after liver resection. Am J Surg 187:777–784

    Article  CAS  PubMed  Google Scholar 

  41. Pockley AG, De Faire U, Kiessling R, Lemne C, Thulin T, Frostegard J (2002) Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J Hypertens 20:1815–1820

    Article  CAS  PubMed  Google Scholar 

  42. Pockley AG, Georgiades A, Thulin T, de Faire U, Frostegard J (2003) Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42:235–238

    Article  CAS  PubMed  Google Scholar 

  43. Dybdahl B, Slordahl SA, Waage A, Kierulf P, Espevik T, Sundan A (2005) Myocardial ishaemia and the inflammatory response: Release of heat shock protein 70 after myocardial infarction. Heart 91:299–304

    Article  CAS  PubMed  Google Scholar 

  44. Genth-Zotz S, Bolger AP, Kalra PR, et al (2003) Heat shock protein 70 in patients with chronic heart failure: Relation to disease severity and survival. Int J Cardiol 96:397–401

    Article  Google Scholar 

  45. Lai Y, Kochanek PM, Adelson PD, Janesko K, Ruppel RA, Clark RSB (2004) Induction of the stress response after inflicted and non-inflicted traumatic brain injury in infants and children. J Neurotrauma 21:229–237

    Article  PubMed  Google Scholar 

  46. Da Rocha AB, Zanoni C, De Freitas GR, et al (2005) Serum HSP70 as an early predictor of fatal outcome after severe traumatic brain injury in males. J Neurotrauma 22:966–977

    Article  PubMed  Google Scholar 

  47. Fukushima A, Kawahara H, Isurugi C, et al (2005) Changes in serum levels of heat shock protein 70 in preterm delivery and pre-eclampsia. J Obstet Gynaecol Res 31:72–77

    Article  CAS  PubMed  Google Scholar 

  48. Adewoye AH, Klings ES, Farber HW, et al (2005) Sickle cell vaso-occlusive crisis induces the release of circulating serum heat shock protein-70. Am J Hematol 78:240–242

    Article  CAS  PubMed  Google Scholar 

  49. Su F, Nguyen ND, Wang Z, Cai Y, Rogiers P, Vincent JL (2005) Fever control in septic shock: Beneficial or harmful? Shock 23:516–520

    PubMed  Google Scholar 

  50. Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC (2002) Serum levels of HSP72 measured early after trauma correlate with survival. J Trauma 52:611–617

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wheeler, D.S., Zingarelli, B., Wong, H.R. (2006). The Role of Extracellular Heat Shock Proteins in Cellular Inflammation and Injury. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33396-7_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-33396-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30155-4

  • Online ISBN: 978-3-540-33396-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics