Skip to main content

Prospects in double beta decay searches

  • Conference paper
  • First Online:
  • 443 Accesses

Abstract

Neutrinos have recently provided us with the first tangible evidence of phenomena beyond the reach of our theory of the laws of particle physics, the remarkably predictive “Standard Model”. The positive observation of oscillations in atmospheric and in solar neutrinos gives new motivations for more sensitive searches. Unfortunately, the oscillation experiments can only provide data on the squared mass differences of the neutrino mass eigenstates, while the absolute scale can only be obtained from direct mass measurements, 3H end point measurements for example or, in the case of Majorana neutrinos, more sensitively by neutrinoless double beta decay. In fact, recently published constraints on the mixing angles of the neutrino mixing matrix make a strong case that if neutrinos are Majorana particles, there are many scenarios in which next-generation double beta decay experiments should be able to observe the phenomenon, trying to disentangle the mass scale of the neutrinos. The interest for next-generation double beta decay experiments is growing, for if the mass scale is below ∼ 0.2 eV, double beta decay may be the only hope for measuring it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.J. Freedman, B. Kayser (Co-chairs of the organizing committee), arXiv:physics/0411216.

    Google Scholar 

  2. R.N. Mohapatra, G. Senjanovic, Phys. Rev. D 23, 165 (1981).

    Article  ADS  Google Scholar 

  3. B. Kayser, The Physics of Massive Neutrinos (World Scientific, Singapore, 1989).

    Book  Google Scholar 

  4. K. Fujikawa, R. Shrock, Phys. Rev. Lett. 45, 963 (1980).

    Article  ADS  Google Scholar 

  5. J. Kaulard et al., Phys. Lett. B 422, 334 (1998).

    Article  ADS  Google Scholar 

  6. B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33, 549 (1957); 34, 247 (1958); Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962); B. Pontecorvo, Zh. Eksp. Teor. Fiz. 53, 1717 (1967).

    Google Scholar 

  7. Ling-Lie Chau, Wai-Yee Keung, Phys. Rev. Lett. 53, 1802 (1984).

    Article  ADS  Google Scholar 

  8. P.J. Siemens, A.S. Jensen, Elements of Nuclei (Addison-Wesley, 1987).

    Google Scholar 

  9. S.R. Elliot et al., Phys. Rev. Lett. 59, 2020 (1987).

    Article  ADS  Google Scholar 

  10. V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 80, 83 (2002).

    Article  ADS  Google Scholar 

  11. H. Ejiri, Prog. Part. Nucl. Phys. B 48, 185 (2002).

    Article  ADS  Google Scholar 

  12. W.H. Furry, Phys. Rev. 56, 1184 (1939).

    Article  MATH  ADS  Google Scholar 

  13. V.A. Rodin, A. Faessler, F. Simkovic, arXiv:nuclth/0503063 (2005).

    Google Scholar 

  14. E. Caurier et al., Nucl. Phys. A 654, 973 (1999).

    Article  ADS  Google Scholar 

  15. J. Engel et al., Phys. Rev. C 37, 731 (1988).

    Article  ADS  Google Scholar 

  16. A. Staudt et al., Europhys. Lett 13, 31 (1990).

    Article  ADS  Google Scholar 

  17. G. Pantis et al., Phys. Rev. C 53, 695 (1996).

    Article  ADS  Google Scholar 

  18. O. Civitarese, J. Suhonen, Nucl. Phys. A 729, 867 (2003).

    Article  ADS  Google Scholar 

  19. A. Strumia, F. Vissani, arXiv:hep-ph/0503246.

    Google Scholar 

  20. J. Suhonen, Nucl. Phys. B (Proc. Suppl.) 143, 240 (2005).

    Article  ADS  Google Scholar 

  21. J. Suhonen, Phys. Lett. B 607, 87 (2005).

    Article  ADS  Google Scholar 

  22. H. Ejiri, Phys. Rep. 338, 265 (2000).

    Article  ADS  Google Scholar 

  23. B.T. Cleveland et al., Astrophys. J. 496, 505 (1998).

    Article  ADS  Google Scholar 

  24. C. Cattadori, N. Ferrari, L. Pandola, Nucl. Phys. B (Proc. Suppl.) 143, 3 (2005).

    Article  ADS  Google Scholar 

  25. Super-Kamiokande Collaboration, hep-ex/0205075.

    Google Scholar 

  26. SNO Collaboration, nucl-ex/0502021.

    Google Scholar 

  27. KamLAND Collaboration, hep-ex/0406035.

    Google Scholar 

  28. S. Goswami, A. Bandyopadhyay, S. Choubey, Nucl. Phys. B (Proc. Suppl.) 143, 121 (2005).

    Article  ADS  Google Scholar 

  29. A. Lewis, S. Bridle Phys. Rev. D 66, 103511 (2002); M. Tegmark et al., Phys. Rev. D 69, 103501 (2004); P. Crotty, J. Lesgourgues, S. Pastor, Phys. Rev. D 69, 123007 (2004).

    Article  ADS  Google Scholar 

  30. V.B. Brudanin et al., Phys. Lett. B 495, 63 (2000).

    Article  ADS  Google Scholar 

  31. HM Collaboration (H.V. Klapdor-Kleingrothaus et al.), Eur. Phys. J. A 12, 147 (2001).

    Article  ADS  Google Scholar 

  32. C.E. Aalseth et al., Nucl. Phys. B 48, 223 (1996).

    Article  Google Scholar 

  33. C.E. Aalseth et al., Phys. Rev. C 59, 2108 (1999).

    Article  ADS  Google Scholar 

  34. IGEX Collaboration (C.E. Aalseth et al.), hepex/0202026.

    Google Scholar 

  35. R. Arnold et al., Phys. Rev. Lett. 95, 182302 (2005).

    Article  ADS  Google Scholar 

  36. F. Danevich et al., Phys. Rev. C 68, 035501 (2003).

    Article  ADS  Google Scholar 

  37. C. Arnaboldi et al., Phys. Lett. B 557, 167 (2003).

    Article  ADS  Google Scholar 

  38. C. Arnaboldi et al., Phys. Rev. Lett. 95, 142501 (2005).

    Article  ADS  Google Scholar 

  39. R. Bernabei et al., Phys. Lett. B 546, 23 (2002).

    Article  ADS  Google Scholar 

  40. A. De Silva et al., Phys. Rev. C 56, 2451 (1997).

    Article  ADS  Google Scholar 

  41. T. Kirsten, H. Richter, E. Jessberger, Phys. Rev. Lett. 50, 474 (1983); A.L. Turkevich et al., Phys. Rev. Lett. 67, 3211 (1991).

    Article  ADS  Google Scholar 

  42. E. Fiorini, T. Niinikoski, Nucl. Instrum. Methods 224, 83 (1984).

    Article  Google Scholar 

  43. A. Alessandrello et al., Nucl. Instrum. Methods A 440, 397 (1998).

    Article  ADS  Google Scholar 

  44. C. Arnaboldi et al., Nucl. Instrum. Methods A 554, 300 (2005).

    Article  ADS  Google Scholar 

  45. R. Arnold et al., Nucl. Instrum. Methods A 536, 79 (2005).

    Article  Google Scholar 

  46. H.V. Klapdor-Kleingrothaus, A. Dietz, H.V. Harney, I.V. Krivosheina, Mod. Phys. Lett. A 16, 2409 (2001).

    Article  ADS  Google Scholar 

  47. C.E. Aalseth et al., Mod. Phys. Lett A 17, 1475 (2002).

    Article  ADS  Google Scholar 

  48. H.V. Klapdor-Kleingrothaus et al., arXiv:hep-ph/0205228.

    Google Scholar 

  49. H.V. Klapdor-Kleingrothaus et al., Nucl. Instrum. Methods A 510, 281 (2003).

    Article  ADS  Google Scholar 

  50. H.V. Klapdor-Kleingrothaus et al., Nucl. Instrum. Methods A 511, 335 (2003).

    Article  ADS  Google Scholar 

  51. H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B 578, 54 (2004).

    Article  ADS  Google Scholar 

  52. Yu.G. Zdesenko et al., Phys. Lett. B 546, 206 (2002).

    Article  ADS  Google Scholar 

  53. F. Feruglio et al., Nucl. Phys. B 637, 345 (2002).

    Article  ADS  Google Scholar 

  54. A. Giuliani, Nucl. Phys. B (Proc. Suppl.) 138, 267 (2005).

    Article  ADS  Google Scholar 

  55. G. Heusser, AIP Conf. Proc. 785, 39 (2005).

    Article  ADS  Google Scholar 

  56. S. Elliott, P. Vogel, Annu. Rev. Nucl. Part. Sci. 52, 115 (2002).

    Article  ADS  Google Scholar 

  57. C. Arnaboldi et al., Nucl. Instrum. Methods A 518, 775 (2004).

    Article  ADS  Google Scholar 

  58. M. Danilov et al., Phys. Lett. B 480, 12 (2000).

    Article  ADS  Google Scholar 

  59. GERDA Collaboration (Hardy Simgen), Nucl. Phys. B (Proc. Suppl.) 143, 567 (2005).

    Article  ADS  Google Scholar 

  60. The Majorana White Paper, 2003 Preprint, nuclex/0311013.

    Google Scholar 

  61. H. Ejiri et al., Phys. Rev. Lett. 85, 2917 (2000).

    Article  ADS  Google Scholar 

  62. S. Moriyama et al., Proceedings of the XENON01 Workshop, December 2001, Tokyo, Japan (2001).

    Google Scholar 

  63. Y. Kato et al., Nucl. Instrum. Methods A 498, 430 (2003).

    Article  ADS  Google Scholar 

  64. NEMO Collaboration (F. Piquemal), talk presented at the IN2P3 scientific committee, 21 March 2005.

    Google Scholar 

  65. G. Bellini et al., Eur. Phys. J. C 19, 43 (2001).

    Article  ADS  Google Scholar 

  66. T. Kishimoto et al., Osaka University 2001 Annual Report.

    Google Scholar 

  67. F.T. Avignone III et al., New J. Phys. 7, 6 (2005).

    Article  ADS  Google Scholar 

  68. S.R. Elliot, J. Engel, J. Phys. G 30, R183 (2004).

    Article  ADS  Google Scholar 

  69. H.V. Klapdor-Kleingrothaus, hep-ph/0103074.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

Pirro, S. (2006). Prospects in double beta decay searches. In: Fülöp, Z., Gyürky, G., Somorjai, E. (eds) The 2nd International Conference on Nuclear Physics in Astrophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32843-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-32843-2_3

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32842-1

  • Online ISBN: 978-3-540-32843-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics