Skip to main content

NMR Studies of Disordered Solids

  • Chapter
Novel NMR and EPR techniques

Part of the book series: Lecture Notes in Physics ((LNP,volume 684))

Abstract

In this contribution an introduction to dynamic solid state NMR spectroscopy is presented. The main emphasis is given to dynamic 2H NMR techniques, since these methods – in combination with selectively or partially deuterated compounds – have demonstrated a particular suitability for studying the molecular properties (i.e. order and dynamics) of solid, semisolid materials as well as anisotropic liquids. A general overview about the theoretical background of dynamic NMR spectroscopy is provided in the first part, which also includes the description of the main experimental methods in dynamic 2H NMR spectroscopy. In the second part representative results from model simulations are given, considering various types of motional processes which are frequently discussed in disordered materials. Applications of dynamic 2H NMR techniques during the study of inclusion compounds are shown in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.I. Kaplan, G. Fraenkel: NMR of Chemically Exchanging Systems (Academic Press, New York 1980)

    Google Scholar 

  2. J. Sandström: Dynamic NMR Spectroscopy (Academic Press, London 1982)

    Google Scholar 

  3. R. Tycko (ed.): Nuclear Magnetic Resonance Probes of Molecular Dynamics (Kluwer, Dordrecht 1994)

    Google Scholar 

  4. H.W. Spiess: Adv. Polym. Sci., 1985, 66, 23

    Google Scholar 

  5. K. Müller, K.-H. Wassmer, G. Kothe: Adv. Polym. Sci. 95, 1, (1990)

    Google Scholar 

  6. G.R. Luckhurst, C.A. Veracini: The Molecular Dynamics of Liquid Crystals (Kluwer, Dordrecht 1989)

    Google Scholar 

  7. R. Dong: Nuclear Magnetic Resonance of Liquid Crystals (Springer, Berlin 1994)

    Google Scholar 

  8. R.G. Griffin: Methods Enzymol. 72, 108, (1981)

    Article  Google Scholar 

  9. J.H. Davis: Biochim. Biophys. Acta 737, 117, (1983)

    Google Scholar 

  10. J. Ripmeester in Inclusion Compounds, Eds. J.L. Atwood, J.E.D. Davies, D.D. MacNicol: Oxford University Press, 1991; Vol.5, p 37

    Google Scholar 

  11. R.R. Vold: in NMR Probes of Molecular Dynamics, Ed. R. Tycko, Kluwer, Dordrecht, 1994, p 27

    Google Scholar 

  12. R.R. Ernst, G. Bodenhausen, A. Wokaun: Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, Oxford 1987)

    Google Scholar 

  13. K. Schmidt-Rohr, H.W. Spiess: Multidimensional Solid-State NMR and Polymers (Academic Press, London 1994)

    Google Scholar 

  14. R.R. Vold, R.L. Vold: Adv. Magn. Opt. Res. 16 (1991) 85

    Google Scholar 

  15. C.A. Fyfe: Solid State NMR for Chemists (CFC Press, Guelph 1983)

    Google Scholar 

  16. J.I. Kaplan: J. Chem. Phys. 28, 278, (1958); 29, 462, (1958)

    Article  ADS  Google Scholar 

  17. S. Alexander: J. Chem. Phys. 37, 967, (1962)

    Article  ADS  Google Scholar 

  18. J. Jeener: Adv. Magn. Reson. 10, 1, (1982)

    Google Scholar 

  19. M. Bak, J.T. Rasmussen, N.C. Nielsen: J. Magn. Reson. 147, 296, (2000)

    Article  ADS  Google Scholar 

  20. D.M. Brink, G.R. Satchler: Angular Momentum (Clarendon, Oxford 1975)

    MATH  Google Scholar 

  21. H.W. Spiess in NMR, Basic, Principles and Progress, Eds. P. Diehl, E. Fluck, R. Kosfeld, Springer-Verlag, Berlin, 1978, Vol. 15, p 55

    Google Scholar 

  22. K. Müller, P. Meier, G. Kothe: Progr. Nucl. Magn. Reson. Spectrosc. 17, 211, (1985)

    Article  Google Scholar 

  23. H.W. Spiess, H. Sillescu: J. Magn. Reson. 42, 381 (1981)

    Google Scholar 

  24. R.J. Wittebort, E.T. Olejniczak, R.G. Griffin: J. Chem. Phys. 86, 5411, (1987)

    Article  ADS  Google Scholar 

  25. A.J. Vega, Z. Luz: J. Chem. Phys. 86, 1803, (1987)

    Article  ADS  Google Scholar 

  26. M.S. Greenfield, A.D. Ronemus, R.L. Vold, R.R. Vold, P.D. Ellis, T.E. Raidy: J. Magn. Reson. 72, 89, (1987)

    Google Scholar 

  27. C. Schmidt, B. Blümich, H.W. Spiess: J. Magn. Reson. 79, 269, (1988)

    Google Scholar 

  28. Sample.les are available from the authors

    Google Scholar 

  29. MathcadTM, Mathsoft Engineering & Education, Inc., Cambridge, MA

    Google Scholar 

  30. MATLABTM, The MathWorks, Inc., Natick, MA

    Google Scholar 

  31. M. Bloom, J.H. Davis, A.L. MacKay: Chem. Phys. Lett. 80, 198, (1981)

    Article  ADS  Google Scholar 

  32. R.K. Wangsness, F. Bloch: Phys. Rev. 89, 728, (1953)

    Article  MATH  ADS  Google Scholar 

  33. A.G. Redfield: Adv. Magn. Reson. 1, 1, (1965)

    Google Scholar 

  34. A.G. Redfield: IBM J. Res. Develop. 1, 19, (1953)

    Article  Google Scholar 

  35. R.J. Wittebort, A. Szabo: J. Chem. Phys. 69, 1722, (1978)

    Article  ADS  Google Scholar 

  36. D.A. Torchia, A. Szabo: J. Magn. Reson. 42, 107, (1982)

    Google Scholar 

  37. C. Boeffel, Z. Luz, R. Poupko, A.J. Vega: Isr. J. Chem. 28, 283, (1988)

    Google Scholar 

  38. B. Blümich, H.W. Spiess: Angew. Chem. 100, 1716, (1988)

    Article  Google Scholar 

  39. J. Schmider, K. Müller: J. Phys. Chem. A 102, 1181, (1998)

    Article  Google Scholar 

  40. A. Liebelt, A. Detken, K. Müller: J. Phys. Chem. B 106, 7781, (2002)

    Article  Google Scholar 

  41. K. Müller: Phys. Chem. Chem. Phys. 4, 5515, (2002)

    Article  Google Scholar 

  42. B.T. Smith, J.M Boyle, B.S. Garbow, Y. Ikebe, V.C. Klema, C.B. Moler: Matrix Eigensystem Routines – EISPACK Guide (Springer, Berlin 1976)

    MATH  Google Scholar 

  43. Further information about the simulation programs are available from the authors

    Google Scholar 

  44. H.R. Allcock, in Inclusion Compounds, (J.L. Atwood, J.E.D. Davies, D.D. Mac- Nicol, Eds.) Academic Press, New York (1984), Vol. 1, p 351

    Google Scholar 

  45. E. Meirovitch, S.B. Rananavare, J.H. Freed: J. Phys. Chem. 91, 5014, (1987)

    Article  Google Scholar 

  46. A. Liebelt, K. Müller: Mol. Cryst. Liq. Cryst. 313, l45, (1998)

    Article  Google Scholar 

  47. J. Villanueva-Garibay, K. Müller: J. Phys. Chem. B 108, 15057, (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Villanueva-Garibay, J., Müller, K. (2006). NMR Studies of Disordered Solids. In: Dolinšek, J., Vilfan, M., Žumer, S. (eds) Novel NMR and EPR techniques. Lecture Notes in Physics, vol 684. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32627-8_3

Download citation

Publish with us

Policies and ethics