Skip to main content

Oxidative Modifications of Proteins and Lipids by Cigarette Smoke (CS). A Central Role for Unsaturated Aldehydes in CS-Mediated Airway Inflammation

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreoli R, Manini P, Corradi M, Mutti A, Niessen WM (2003) Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/atmospheric chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 17:637–45

    PubMed  CAS  Google Scholar 

  • Annovazzi L, Cattaneo V, Viglio S, Perani E, Zanone C, Rota C, Pecora F, Cetta G, Silvestri M, Iadarola P (2004) High-performance liquid chromatography and capillary electrophoresis: methodological challenges for the determination of biologically relevant low-aliphatic aldehydes in human saliva. Electrophoresis 25:1255–1263

    PubMed  CAS  Google Scholar 

  • Anto RJ, Mukhopadhyay A, Shishodia S, Gairola CG, Aggarwal BB (2002) Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2. Carcinogenesis 23:1511–1518

    PubMed  CAS  Google Scholar 

  • Berhane K, Widersten M, Engstrom A, Kozarich JW, Mannervik B (1994) Detoxication of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc Natl Acad Sci U S A 91:1480–1484

    PubMed  CAS  Google Scholar 

  • Borchers MT, Wesselkamper S, Wert SE, Shapiro SD, Leikauf GD (1999) Monocyte inflammation augments acrolein-induced Muc5ac expression in mouse lung. Am J Physiol 277:L489–L497

    PubMed  CAS  Google Scholar 

  • Cao Z, Hardej D, Trombetta LD, Trush MA, Li Y (2003) Induction of cellular glutathione and glutathione S-transferase by 3H-1,2-dithiole-3-thione in rat aortic smooth muscle A10 cells: protection against acrolein-induced toxicity. Atherosclerosis 166:291–301

    PubMed  CAS  Google Scholar 

  • Carnevali S, Petruzzelli S, Longoni B, Vanacore R, Barale R, Cipollini M, Scatena F, Paggiaro P, Celi A, Giuntini C (2003) Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts. Am J Physiol 284:L955–L963

    CAS  Google Scholar 

  • Chalmers GW, MacLeod KJ, Thomson L, Little SA, McSharry C, Thomson NC (2001) Smoking and airway inflammation in patients with mild asthma. Chest 120:1917–1922

    PubMed  CAS  Google Scholar 

  • Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    PubMed  CAS  Google Scholar 

  • Conrad CC, Choi J, Malakowsky CA, Talent JM, Dai R, Marshall P, Gracy RW (2001) Identification of protein carbonyls after two-dimensional electrophoresis. Proteomics 1:829–834

    PubMed  CAS  Google Scholar 

  • Corradi M, Pignatti P, Manini P, Andreoli R, Goldoni M, Poppa M, Moscato G, Balbi B, Mutti A (2004) Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation. Eur Respir J 24:1011–1017

    PubMed  CAS  Google Scholar 

  • Cueto R, Pryor WA (1994) Cigarette smoke chemistry: conversion of nitric oxide to nitrogen dioxide and reactions of nitrogen oxides with other smoke components as studied by Fourier transform infrared spectroscopy. Vib Spectrosc 7:97–111

    CAS  Google Scholar 

  • Deshmukh HS, Case LM, Wesselkamper SC, Borchers MT, Martin LD, Shertzer HG, Nadel JA, Leikauf GD (2005) Metalloproteinases mediate mucin 5AC expression by epidermal growth factor receptor activation. Am J Respir Crit Care Med 171:305–314

    PubMed  Google Scholar 

  • Dick RA, Kensler TW (2004) The catalytic and kinetic mechanisms of NADPH-dependent alkenal/one oxidoreductase. J Biol Chem 279:17269–17277

    PubMed  CAS  Google Scholar 

  • Dick RA, Kwak MK, Sutter TR, Kensler TW (2001) Antioxidative function and substrate specificity of NAD(P)H-dependent alkenal/one oxidoreductase. A new role for leukotriene B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase. J Biol Chem 276:40803–40810

    PubMed  CAS  Google Scholar 

  • Dietrich M, Block G, Benowitz NL, Morrow JD, Hudes M, Jacob P III, Norkus EP, Packer L (2003) Vitamin C supplementation decreases oxidative stress biomarker F2-isoprostanes in plasma of nonsmokers exposed to environmental tobacco smoke. Nutr Cancer 45:176–184

    PubMed  CAS  Google Scholar 

  • DiFranza JR, Aligne CA, Weitzman M (2004) Prenatal and postnatal environmental tobacco smoke exposure and children’s health. Pediatrics 113:1007–1015

    PubMed  Google Scholar 

  • Drannik AG, Pouladi MA, Robbins CS, Goncharova SI, Kianpour S, Stampfli MR (2004) Impact of cigarette smoke on clearance and inflammation after Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 170:1164–1171

    PubMed  Google Scholar 

  • Eiserich JP, Cross CE, van der Vliet A (1997) Nitrogen oxides are important contributors to cigarette smoke-induced ascorbate oxidation. In: Packer L, Fuchs J (eds) Vitamin C in health and disease. Dekker, New York, pp 399–412

    Google Scholar 

  • Eiserich JP, van der Vliet A, Handelman GJ, Halliwell B, Cross CE (1995) Dietary antioxidants and cigarette smoke-induced biomolecular damage: a complex interaction. Am J Clin Nutr 62:S1490–S1500

    Google Scholar 

  • Eiserich JP, Vossen V, O’Neill CA, Halliwell B, Cross CE, van der Vliet A (1994) Molecular mechanisms of damage by excess nitrogen oxides: nitration of tyrosine by gas-phase cigarette smoke. FEBS Lett 353:53–56

    PubMed  CAS  Google Scholar 

  • Eisner MD, Yelin EH, Henke J, Shiboski SC, Blanc PD (1998) Environmental tobacco smoke and adult asthma. The impact of changing exposure status on health outcomes. Am J Respir Crit Care Med 158:170–175

    PubMed  CAS  Google Scholar 

  • Ensor CM, Zhang H, Tai HH (1998) Purification, cDNA cloning and expression of 15-oxoprostaglandin 13-reductase from pig lung. Biochem J 330(Pt 1):103–108

    PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    PubMed  CAS  Google Scholar 

  • Fadeel B, Ahlin A, Henter JI, Orrenius S, Hampton MB (1998) Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species. Blood 92:4808–4818

    PubMed  CAS  Google Scholar 

  • Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898

    PubMed  CAS  Google Scholar 

  • Finkelstein EI, Nardini M, van der Vliet A (2001) Inhibition of neutrophil apoptosis by acrolein: a mechanism of tobacco-related lung disease? Am J Physiol 281:L732–L739

    CAS  Google Scholar 

  • Finkelstein EI, Ruben J, Koot CW, Hristova M, van der Vliet A (2005) Regulation of constitutive neutrophil apoptosis by the α,β-unsaturated aldehydes acrolein and 4-hydroxynonenal. Am J Physiol 289:L1019–L1028

    CAS  Google Scholar 

  • Floreani AA, Rennard SI (1999) The role of cigarette smoke in the pathogenesis of asthma and as a trigger for acute symptoms. Curr Opin Pulm Med 5:38–46

    PubMed  CAS  Google Scholar 

  • Frei B (1991) Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage. Am J Clin Nutr 54:1113S–1118S

    PubMed  CAS  Google Scholar 

  • Furuhata A, Nakamura M, Osawa T, Uchida K (2002) Thiolation of protein-bound carcinogenic aldehyde. An electrophilic acrolein-lysine adduct that covalently binds to thiols. J Biol Chem 277:27919–27926

    PubMed  CAS  Google Scholar 

  • Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255

    PubMed  CAS  Google Scholar 

  • Gebel S, Gerstmayer B, Bosio A, Haussmann HJ, Van Miert E, Muller T (2004) Gene expression profiling in respiratory tissues from rats exposed to mainstream cigarette smoke. Carcinogenesis 25:169–178

    PubMed  CAS  Google Scholar 

  • Gebel S, Muller T (2001) The activity of NF-kappaB in Swiss 3T3 cells exposed to aqueous extracts of cigarette smoke is dependent on thioredoxin. Toxicol Sci 59:75–81

    PubMed  CAS  Google Scholar 

  • Gilliland FD, Li YF, Dubeau L, Berhane K, Avol E, McConnell R, Gauderman WJ, Peters JM (2002) Effects of glutathione S-transferase M1, maternal smoking during pregnancy, and environmental tobacco smoke on asthma and wheezing in children. Am J Respir Crit Care Med 166:457–463

    PubMed  Google Scholar 

  • Green GM (1968) Cigarette smoke: protection of alveolar macrophages by glutathione and cysteine. Science 162:810–811

    PubMed  CAS  Google Scholar 

  • Hackett NR, Heguy A, Harvey BG, O’Connor TP, Luettich K, Flieder DB, Kaplan R, Crystal RG (2003) Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. Am J Respir Cell Mol Biol 29:331–343

    PubMed  CAS  Google Scholar 

  • Hampton MB, Stamenkovic I, Winterbourn CC (2002) Interaction with substrate sensitises caspase-3 to inactivation by hydrogen peroxide. FEBS Lett 517:229–232

    PubMed  CAS  Google Scholar 

  • Harrison DJ, Cantlay AM, Rae F, Lamb D, Smith CA (1997) Frequency of glutathione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol 16:356–360

    PubMed  CAS  Google Scholar 

  • Haslett C (1999) Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 160:S5–S11

    PubMed  CAS  Google Scholar 

  • Haynes RL, Brune B, Townsend AJ (2001) Apoptosis in RAW 264.7 cells exposed to 4-hydroxy-2-nonenal: dependence on cytochrome C release but not p53 accumulation. Free Radic Biol Med 30:884–894

    PubMed  CAS  Google Scholar 

  • He JQ, Connett JE, Anthonisen NR, Pare PD, Sandford AJ (2004) Glutathione S-transferase variants and their interaction with smoking on lung function. Am J Respir Crit Care Med 170:388–394

    PubMed  Google Scholar 

  • He NG, Awasthi S, Singhal SS, Trent MB, Boor PJ (1998) The role of glutathione S-transferases as a defense against reactive electrophiles in the blood vessel wall. Toxicol Appl Pharmacol 152:83–89

    PubMed  CAS  Google Scholar 

  • Hoshino Y, Mio T, Nagai S, Miki H, Ito I, Izumi T (2001) Cytotoxic effects of cigarette smoke extract on an alveolar type II cell-derived cell line. Am J Physiol 281:L509–L516

    CAS  Google Scholar 

  • Hubatsch I, Ridderstrom M, Mannervik B (1998) Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J 330(Pt 1):175–179

    PubMed  CAS  Google Scholar 

  • Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109:41–50

    PubMed  CAS  Google Scholar 

  • Ishii T, Matsuse T, Teramoto S, Matsui H, Miyao M, Hosoi T, Takahashi H, Fukuchi Y, Ouchi Y (1999) Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax 54:693–696

    PubMed  CAS  Google Scholar 

  • Ishii T, Uchida K (2004) Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2. Chem Res Toxicol 17:1313–1322

    PubMed  CAS  Google Scholar 

  • Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36:1208–1213

    PubMed  CAS  Google Scholar 

  • Ji C, Amarnath V, Pietenpol JA, Marnett LJ (2001a) 4-hydroxynonenal induces apoptosis via caspase-3 activation and cytochrome c release. Chem Res Toxicol 14:1090–1096

    PubMed  CAS  Google Scholar 

  • Ji C, Kozak KR, Marnett LJ (2001b) IkappaB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J Biol Chem 276:18223–18228

    PubMed  CAS  Google Scholar 

  • Kabesch M, Hoefler C, Carr D, Leupold W, Weiland SK, von Mutius E (2004) Glutathione S-transferase deficiency and passive smoking increase childhood asthma. Thorax 59:569–573

    PubMed  CAS  Google Scholar 

  • Kehrer JP, Biswal SS (2000) The molecular effects of acrolein. Toxicol Sci 57:6–15

    PubMed  CAS  Google Scholar 

  • Keightley JA, Shang L, Kinter M (2004) Proteomic analysis of oxidative stress-resistant cells: a specific role for aldose reductase overexpression in cytoprotection. Mol Cell Proteomics 3:167–175

    PubMed  CAS  Google Scholar 

  • Kim H, Liu X, Kobayashi T, Conner H, Kohyama T, Wen FQ, Fang Q, Abe S, Bitterman P, Rennard SI (2004) Reversible cigarette smoke extract-induced DNA damage in human lung fibroblasts. Am J Respir Cell Mol Biol 31:483–490

    PubMed  CAS  Google Scholar 

  • Kirkham PA, Spooner G, Rahman I, Rossi AG (2004) Macrophage phagocytosis of apoptotic neutrophils is compromised by matrix proteins modified by cigarette smoke and lipid peroxidation products. Biochem Biophys Res Commun 318:32–37

    PubMed  CAS  Google Scholar 

  • Kondo M, Oya-Ito T, Kumagai T, Osawa T, Uchida K (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress. J Biol Chem 276:12076–12083

    PubMed  CAS  Google Scholar 

  • Kwak MK, Kensler TW, Casero RA Jr (2003) Induction of phase 2 enzymes by serum oxidized polyamines through activation of Nrf2: effect of the polyamine metabolite acrolein. Biochem Biophys Res Commun 305:662–670

    PubMed  CAS  Google Scholar 

  • Lauber K, Blumenthal SG, Waibel M, Wesselborg S (2004) Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 14:277–287

    PubMed  CAS  Google Scholar 

  • Lee BM, Lee SK, Kim HS (1998) Inhibition of oxidative DNA damage, 8-OHdG, and carbonyl contents in smokers treated with antioxidants (vitamin E, vitamin C, beta-carotene and red ginseng). Cancer Lett 132:219–227

    PubMed  CAS  Google Scholar 

  • Leonarduzzi G, Arkan MC, Basaga H, Chiarpotto E, Sevanian A, Poli G (2000) Lipid oxidation products in cell signaling. Free Radic Biol Med 28:1370–1378

    PubMed  CAS  Google Scholar 

  • Leuchtenberger C, Leuchtenberger R, Zbinden I (1974) Gas vapour phase constituents and SH reactivity of cigarette smoke influence lung cultures. Nature 247:565–567

    PubMed  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    PubMed  CAS  Google Scholar 

  • Levonen AL, Landar A, Ramachandran A, Ceaser EK, Dickinson DA, Zanoni G, Morrow JD, Darley-Usmar VM (2004) Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J 378:373–382

    PubMed  CAS  Google Scholar 

  • Li J, Kartha S, Iasvovskaia S, Tan A, Bhat RK, Manaligod JM, Page K, Brasier AR, Hershenson MB (2002) Regulation of human airway epithelial cell IL-8 expression by MAP kinases. Am J Physiol 283:L690–L699

    CAS  Google Scholar 

  • Li L, Hamilton RF Jr, Holian A (1999) Effect of acrolein on human alveolar macrophage NF-kappaB activity. Am J Physiol 277:L550–L557

    PubMed  CAS  Google Scholar 

  • Li L, Hamilton RF Jr, Taylor DE, Holian A (1997) Acrolein-induced cell death in human alveolar macrophages. Toxicol Appl Pharmacol 145:331–339

    PubMed  CAS  Google Scholar 

  • Li L, Holian A (1998) Acrolein: a respiratory toxin that suppresses pulmonary host defense. Rev Environ Health 13:99–108

    PubMed  CAS  Google Scholar 

  • Lykkesfeldt J, Christen S, Wallock LM, Chang HH, Jacob RA, Ames BN (2000) Ascorbate is depleted by smoking and repleted by moderate supplementation: a study in male smokers and nonsmokers with matched dietary antioxidant intakes. Am J Clin Nutr 71:530–536

    PubMed  CAS  Google Scholar 

  • Maderna P, Godson C (2003) Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta 1639:141–151

    PubMed  CAS  Google Scholar 

  • Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS (1999) Fas-induced caspase denitrosylation. Science 284:651–654

    PubMed  CAS  Google Scholar 

  • Maranzana A, Mehlhorn RJ (1998) Loss of glutathione, ascorbate recycling, and free radical scavenging in human erythrocytes exposed to filtered cigarette smoke. Arch Biochem Biophys 350:169–182

    PubMed  CAS  Google Scholar 

  • Martey CA, Pollock SJ, Turner CK, O’Reilly KM, Baglole CJ, Phipps RP, Sime PJ (2004) Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am J Physiol 287:L981–L991

    CAS  Google Scholar 

  • Mercer BA, Kolesnikova N, Sonett J, D’Armiento J (2004) Extracellular regulated kinase/mitogen activated protein kinase is up-regulated in pulmonary emphysema and mediates matrix metalloproteinase-1 induction by cigarette smoke. J Biol Chem 279:17690–17696

    PubMed  CAS  Google Scholar 

  • Mio T, Romberger DJ, Thompson AB, Robbins RA, Heires A, Rennard SI (1997) Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am J Respir Crit Care Med 155:1770–1776

    PubMed  CAS  Google Scholar 

  • Moodie FM, Marwick JA, Anderson CS, Szulakowski P, Biswas SK, Bauter MR, Kilty I, Rahman I (2004) Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J 18:1897–1899

    PubMed  CAS  Google Scholar 

  • Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y, Strauss WE, Oates JA, Roberts LJ II (1995) Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med 332:1198–1203

    PubMed  CAS  Google Scholar 

  • Muller T, Gebel S (1998) The cellular stress response induced by aqueous extracts of cigarette smoke is critically dependent on the intracellular glutathione concentration. Carcinogenesis 19:797–801

    PubMed  CAS  Google Scholar 

  • Nardini M, Finkelstein EI, Reddy S, Valacchi G, Traber M, Cross CE, van der Vliet A (2002) Acrolein-induced cytotoxicity in cultured human bronchial epithelial cells. Modulation by alphatocopherol and ascorbic acid. Toxicology 170:173–185

    PubMed  CAS  Google Scholar 

  • Nguyen H, Finkelstein E, Reznick A, Cross C, van der Vliet A (2001) Cigarette smoke impairs neutrophil respiratory burst activation by aldehyde-induced thiol modifications. Toxicology 160:207–217

    PubMed  CAS  Google Scholar 

  • Niknahad H, Siraki AG, Shuhendler A, Khan S, Teng S, Galati G, Easson E, Poon R, O’Brien PJ (2003) Modulating carbonyl cytotoxicity in intact rat hepatocytes by inhibiting carbonyl-metabolizing enzymes. I. Aliphatic alkenals. Chem Biol Interact 143–144:107–117

    PubMed  Google Scholar 

  • Norman V (1977) An overview of the vapor phase, semivolatile, and non-volatile components of cigarette smoke. In: Tobacco smoke: its formation and composition, vol. 3. Tennessee Eastman, Kingsport, TN, p 28

    Google Scholar 

  • Norman V, Keith CH (1965) Nitrogen oxides in tobacco smoke. Nature 205:915–916

    CAS  Google Scholar 

  • Pal A, Hu X, Zimniak P, Singh SV (2000) Catalytic efficiencies of allelic variants of human glutathione S-transferase Pi in the glutathione conjugation of alpha,beta-unsaturated aldehydes. Cancer Lett 154:39–43

    PubMed  CAS  Google Scholar 

  • Panda K, Chattopadhyay R, Chattopadhyay D, Chatterjee IB (2001) Cigarette smoke-induced protein oxidation and proteolysis is exclusively caused by its tar phase: prevention by vitamin C. Toxicol Lett 123:21–32

    PubMed  CAS  Google Scholar 

  • Park YS, Misonou Y, Fujiwara N, Takahashi M, Miyamoto Y, Koh YH, Suzuki K, Taniguchi N (2005) Induction of thioredoxin reductase as an adaptive response to acrolein in human umbilical vein endothelial cells. Biochem Biophys Res Commun 327:1058–1065

    PubMed  CAS  Google Scholar 

  • Parola M, Robino G, Marra F, Pinzani M, Bellomo G, Leonarduzzi G, Chiarugi P, Camandola S, Poli G, Waeg G, Gentilini P, Dianzani MU (1998) HNE interacts directly with JNK isoforms in human hepatic stellate cells. J Clin Invest 102:1942–1950

    PubMed  CAS  Google Scholar 

  • Petersen DR, Doorn JA (2004) Reactions of 4-hydroxynonenal with proteins and cellular targets. Free Radic Biol Med 37:937–45

    PubMed  CAS  Google Scholar 

  • Petruzzelli S, Puntoni R, Mimotti P, Pulera N, Baliva F, Fornai E, Giuntini C (1997) Plasma 3-nitrotyrosine in cigarette smokers. Am J Respir Crit Care Med 156:1902–1907

    PubMed  CAS  Google Scholar 

  • Pignatelli B, Li CQ, Boffetta P, Chen Q, Ahrens W, Nyberg F, Mukeria A, Bruske-Hohlfeld I, Fortes C, Constantinescu V, Ischiropoulos H, Ohshima H (2001) Nitrated and oxidized plasma proteins in smokers and lung cancer patients. Cancer Res 61:778–784

    PubMed  CAS  Google Scholar 

  • Poynter ME, Irvin CG, Janssen-Heininger YM (2003) A prominent role for airway epithelial NF-kappa B activation in lipopolysaccharide-induced airway inflammation. J Immunol 170:6257–6265

    PubMed  CAS  Google Scholar 

  • Rahman I, MacNee W (1996) Oxidant/antioxidant imbalance in smokers and chronic obstructive pulmonary disease. Thorax 51:348–50

    PubMed  CAS  Google Scholar 

  • Rahman I, MacNee W (1999) Lung glutathione and oxidative stress: implications in cigarette smoke-induced airway disease. Am J Physiol 277:L1067–L1088

    PubMed  CAS  Google Scholar 

  • Ramu K, Perry CS, Ahmed T, Pakenham G, Kehrer JP (1996) Studies on the basis for the toxicity of acrolein mercapturates. Toxicol Appl Pharmacol 140:487–498

    PubMed  CAS  Google Scholar 

  • Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, Yamamoto M, Petrache I, Tuder RM, Biswal S (2004) Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 114:1248–1259

    PubMed  CAS  Google Scholar 

  • Reddy S, Finkelstein EI, Wong PS, Phung A, Cross CE, van der Vliet A (2002) Identification of glutathione modifications by cigarette smoke. Free Radic Biol Med 33:1490–1498

    PubMed  CAS  Google Scholar 

  • Renes J, de Vries EE, Hooiveld GJ, Krikken I, Jansen PL, Muller M (2000) Multidrug resistance protein MRP1 protects against the toxicity of the major lipid peroxidation product 4-hydroxynonenal. Biochem J 350 (Pt 2):555–561

    PubMed  CAS  Google Scholar 

  • Rennard SI (2004) Cigarette smoke in research. Am J Respir Cell Mol Biol 31:479–480

    PubMed  CAS  Google Scholar 

  • Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, Wouters EF, van der Vliet A, Janssen-Heininger YM (2004) Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc Natl Acad Sci U S A 101:8945–8950

    PubMed  CAS  Google Scholar 

  • Reznick AZ, Cross CE, Hu ML, Suzuki YJ, Khwaja S, Safadi A, Motchnik PA, Packer L, Halliwell B (1992) Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation. Biochem J 286 (Pt 2):607–611

    PubMed  CAS  Google Scholar 

  • Sadikot RT, Han W, Everhart MB, Zoia O, Peebles RS, Jansen ED, Yull FE, Christman JW, Blackwell TS (2003) Selective I kappa B kinase expression in airway epithelium generates neutrophilic lung inflammation. J Immunol 170:1091–1098

    PubMed  CAS  Google Scholar 

  • Saetta M (1999) Airway inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160:S17–S20

    PubMed  CAS  Google Scholar 

  • Sanli G, Dudley JI, Blaber M (2003) Structural biology of the aldo-keto reductase family of enzymes: catalysis and cofactor binding. Cell Biochem Biophys 38:79–101

    PubMed  CAS  Google Scholar 

  • Savill J (1997) Recognition and phagocytosis of cells undergoing apoptosis. Br Med Bull 53:491–508

    PubMed  CAS  Google Scholar 

  • Schwartz J, Timonen KL, Pekkanen J (2000) Respiratory effects of environmental tobacco smoke in a panel study of asthmatic and symptomatic children. Am J Respir Crit Care Med 161:802–806

    PubMed  CAS  Google Scholar 

  • Shao MX, Nakanaga T, Nadel JA (2004) Cigarette smoke induces MUC5AC mucin overproduction via tumor necrosis factor-alpha-converting enzyme in human airway epithelial (NCI-H292) cells. Am J Physiol 287:L420–L427

    CAS  Google Scholar 

  • Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    PubMed  CAS  Google Scholar 

  • Sladek NE (2003) Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 17:7–23

    PubMed  CAS  Google Scholar 

  • Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, Palma J, Brody JS (2004) Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A 101:10143–10148

    PubMed  CAS  Google Scholar 

  • Srivastava S, Watowich SJ, Petrash JM, Srivastava SK, Bhatnagar A (1999) Structural and kinetic determinants of aldehyde reduction by aldose reductase. Biochemistry 38:42–54

    PubMed  CAS  Google Scholar 

  • Takeuchi K, Kato M, Suzuki H, Akhand AA, Wu J, Hossain K, Miyata T, Matsumoto Y, Nimura Y, Nakashima I (2001) Acrolein induces activation of the epidermal growth factor receptor of human keratinocytes for cell death. J Cell Biochem 81:679–688

    PubMed  CAS  Google Scholar 

  • Takeyama K, Jung B, Shim JJ, Burgel PR, Dao-Pick T, Ueki IF, Protin U, Kroschel P, Nadel JA (2001) Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke. Am J Physiol 280:L165–L172

    CAS  Google Scholar 

  • Tirumalai R, Rajesh Kumar T, Mai KH, Biswal S (2002) Acrolein causes transcriptional induction of phase II genes by activation of Nrf2 in human lung type II epithelial (A549) cells. Toxicol Lett 132:27–36

    PubMed  CAS  Google Scholar 

  • Tsuji T, Aoshiba K, Nagai A (2004) Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol 31:643–649

    PubMed  CAS  Google Scholar 

  • Uchida K (1999) Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc Med 9:109–113

    PubMed  CAS  Google Scholar 

  • Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T (1999) Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 274:2234–2242

    PubMed  CAS  Google Scholar 

  • Valacchi G, Pagnin E, Phung A, Nardini M, Schock BC, Cross CE, van der Vliet A (2005) Inhibition of NFkB activation and IL-8 expression in human bronchial epithelial cells by acrolein. Antioxid Redox Signal 7:25–31

    PubMed  CAS  Google Scholar 

  • Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A 101:2040–2045

    PubMed  CAS  Google Scholar 

  • Wang H, Liu X, Umino T, Skold CM, Zhu Y, Kohyama T, Spurzem JR, Romberger DJ, Rennard SI (2001) Cigarette smoke inhibits human bronchial epithelial cell repair processes. Am J Respir Cell Mol Biol 25:772–779

    PubMed  CAS  Google Scholar 

  • Wickenden JA, Clarke MC, Rossi AG, Rahman I, Faux SP, Donaldson K, MacNee W (2003) Cigarette smoke prevents apoptosis through inhibition of caspase activation and induces necrosis. Am J Respir Cell Mol Biol 29:562–570

    PubMed  CAS  Google Scholar 

  • Wills-Karp M, Ewart SL (2004) Time to draw breath: asthma-susceptibility genes are identified. Nat Rev Genet 5:376–387

    PubMed  CAS  Google Scholar 

  • Witschi H, Joad JP, Pinkerton KE (1997) The toxicology of environmental tobacco smoke. Annu Rev Pharmacol Toxicol 37:29–52

    PubMed  CAS  Google Scholar 

  • Yang X, Wu X, Choi YE, Kern JC, Kehrer JP (2004) Effect of acrolein and glutathione depleting agents on thioredoxin. Toxicology 204:209–218

    PubMed  CAS  Google Scholar 

  • Yoneda K, Peck K, Chang MM, Chmiel K, Sher YP, Chen J, Yang PC, Chen Y, Wu R (2001) Development of high-density DNA microarray membrane for profiling smoke-and hydrogen peroxide-induced genes in a human bronchial epithelial cell line. Am J Respir Crit Care Med 164:S85–S89

    PubMed  CAS  Google Scholar 

  • Yoo BS, Regnier FE (2004) Proteomic analysis of carbonylated proteins in two-dimensional gel electrophoresis using avidin-fluorescein affinity staining. Electrophoresis 25:1334–1341

    PubMed  CAS  Google Scholar 

  • Zang LY, Stone K, Pryor WA (1995) Detection of free radicals in aqueous extracts of cigarette tar by electron spin resonance. Free Radic Biol Med 19:161–167

    PubMed  CAS  Google Scholar 

  • Zhang R, Brennan ML, Shen Z, MacPherson JC, Schmitt D, Molenda CE, Hazen SL (2002a) Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J Biol Chem 277:46116–46122

    PubMed  CAS  Google Scholar 

  • Zhang R, Shen Z, Nauseef WM, Hazen SL (2002b) Defects in leukocyte-mediated initiation of lipid peroxidation in plasma as studied in myeloperoxidase-deficient subjects: systematic identification of multiple endogenous diffusible substrates for myeloperoxidase in plasma. Blood 99:1802–1810

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Vliet, A. (2006). Oxidative Modifications of Proteins and Lipids by Cigarette Smoke (CS). A Central Role for Unsaturated Aldehydes in CS-Mediated Airway Inflammation. In: Halliwell, B.B., Poulsen, H.E. (eds) Cigarette Smoke and Oxidative Stress. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32232-9_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-32232-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31410-3

  • Online ISBN: 978-3-540-32232-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics