Skip to main content

High-Density Mesh Flow Computations by Building-Cube Method

  • Conference paper
Computational Fluid Dynamics 2004

4 Conclusion

In this paper, an approach named Building-Cube Method, aimed for largescale computation on near-future advanced parallel computers, was applied to flow computations of two airfoils; RAE2822 airfoil at transonic speed and four-element airfoil at low Mach number. The method is based on the Cartesian mesh, and the local grid density is adapted to the flow characteristic length by changing the cube size. Equal spacing and equal number of Cartesian grid in each cube make it easy to parallelize the flow solver and to handle huge data output. The computed results showed detailed flow features near the airfoil surfaces owing to the high-density and isotropic mesh. The pressure coefficient distributions of the time-averaged result of the four-element airfoil showed good agreement with the experiment data. It is interesting that, with the high-density and isotropic mesh, the computations without turbulence models show reasonable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Nakahashi, Y. Ito, F. Togashi: Int. J. Numer. Meth. Fluids, 43, pp.769–783, 2003.

    Article  MATH  Google Scholar 

  2. K. Nakahashi: Computational Fluid Dynamics 2002, Eds. S. Armfield, R. Morgan, K. Srinivas, (Springer, 2003) pp.77–81.

    Google Scholar 

  3. K. Nakahashi, LaeSung Kim: AIAA Paper 2004-0434, January 2004.

    Google Scholar 

  4. K. Nakahashi, K. Egami: Computers and Fluids, 19,3/4, 1991, pp.273–286.

    Article  MATH  Google Scholar 

  5. S. Obayashi, G. P. Guruswamy: AIAA J. 33,6, 1995, pp.1134–1141.

    Article  MATH  Google Scholar 

  6. S. Yamamoto, H. Daiguji: Computer and Fluids, 22,2/3, 1993, pp.259–270.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Matsuno: Computer and Fluids, 22,2/3, 1993, pp.311–322.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. H. Cook, M. A. McDonald, M. C. P. Firmin: AGARD-AR-138, 1979.

    Google Scholar 

  9. E. Omar, T. Zierten, M. Habn, E. Szpiro, and A. Mabal: NASA CR-2215, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakahashi, K., Kim, L. (2006). High-Density Mesh Flow Computations by Building-Cube Method. In: Groth, C., Zingg, D.W. (eds) Computational Fluid Dynamics 2004. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31801-1_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-31801-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31800-2

  • Online ISBN: 978-3-540-31801-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics