Skip to main content

Methylation Dynamics in the Early Mammalian Embryo: Implications of Genome Reprogramming Defects for Development

  • Chapter
Book cover DNA Methylation: Development, Genetic Disease and Cancer

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 310))

Abstract

In mouse and most other mammalian species, the paternal and maternal genomes undergo parent-specific epigenetic reprogramming during preimplantation development. The paternal genome is actively demethylated within a few hours after fertilization in the mouse, rat, pig, bovine, and human zygote, whereas the maternal genome is passively demethylated by a replication-dependent mechanism after the two-cell embryo stage. These genome-wide demethylation waves may have a role in reprogramming of the genetically inactive sperm and egg chromatin for somatic development. Disturbances in this highly coordinated process may contribute to developmental failures and defects inmammals. The frequency and severity of abnormal phenotypes increase after interferingwith or bypassing essential steps of gametogenesis, early embryogenesis, or both. Nevertheless, it is plausible that normal fertilization, assisted reproduction, and embryo cloning are all susceptible to similar dysregulation of epigenetic components. Although themousemay be an excellentmodel for early human development, species and strain differences in the molecular and cellular events shortly after fertilization may have important implications for the efficiency of epigenetic reprogramming and the incidence of reprogramming defects. Some species, i.e., rabbit and sheep, do not require drastic genome-wide demethylation for early development, most likely because the transition from maternal to embryonic control occurs relatively late during preimplantation development. A better understanding of key reprogramming factors—in particular the demethylase activity in the fertilized egg—is crucial for improving human infertility treatment and the efficiency of mammalian embryo cloning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adenot PG, Mercier Y, Renard J-P, Thompson EM (1997) Differential H4 acetylation of paternal andmaternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cellmouse embryos. Development 124:4615–4625

    PubMed  CAS  Google Scholar 

  • Bartolomei MS, Tilghman SM (1997) Genomic imprinting in mammals. Annu Rev Genet 31:493–525

    Article  PubMed  CAS  Google Scholar 

  • Barton SC, Arney KL, Shi W, Fundele R, Surani MA, Haaf T (2001) Genome-wide methylation patterns in normal and uniparental early mouse embryos. Hum Mol Genet 10:2983–2987

    Article  PubMed  CAS  Google Scholar 

  • Beaujean N, Hartshorne G, Cavilla J, Taylor JE, Gardner J, Wilmut I, Meehan R, Young L (2004a) Non-conservation of mammalian preimplantation methylation dynamics. Curr Biol 14:R266–R267

    Article  PubMed  CAS  Google Scholar 

  • Beaujean N, Taylor JE, McGarry M, Gardner JO, Wilmut I, Loi P, Ptak G, Galli C, Lazzari G, Bird A, Young LE, Meehan RR (2004b) The effect of interspecific oocytes on demethylation of sperm DNA. Proc Natl Acad Sci USA 101:7636–7640

    Article  PubMed  CAS  Google Scholar 

  • Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    Article  PubMed  CAS  Google Scholar 

  • Bortvin A, Eggan K, Skaletsky H, Akutsu H, Berry DL, Yanagimachi R, Page DC, Jaenisch R (2003) Incomplete reactivation of Oct4-related genes inmouseembryos cloned from somatic nuclei. Development 130:1673–1680

    Article  PubMed  CAS  Google Scholar 

  • Bourc’his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard JP, Viegas-Pequignot E (2001) Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 11:1542–1546

    Article  PubMed  CAS  Google Scholar 

  • Cardoso MC, Leonhardt H (1999) DNA methyltransferase is actively retained in the cytoplasm during early development. J Cell Biol 147:25–32

    Article  PubMed  CAS  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh P (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36

    Article  PubMed  CAS  Google Scholar 

  • Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 98:13734–13738

    Article  PubMed  CAS  Google Scholar 

  • Haaf T (2001) The battle of the sexes after fertilization: behaviour of paternal and maternal chromosomesinthe earlymammalianembryo. Chromosome Res 9:263–271

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Shi W, Fundele R, Arney KL, Surani MA, Barton SC (2004) Differential demethylation of paternal and maternal genomes in the preimplantation mouse embryo: implications formammalian development. In: Schmid M, Nanda I (eds) Chromosomes today, vol. 14. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 207–214

    Google Scholar 

  • Humpherys D, Eggan K, Akutsu H, Friedman A, Hochedlinger K, Yanagimachi R, Lander ES, Golub TR, Jaenisch R (2002) Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci USA 99:12889–12894

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  PubMed  CAS  Google Scholar 

  • Kanka J (2003) Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology 59:3–19

    Article  PubMed  CAS  Google Scholar 

  • Koshla S, Dean W, Brown D, Reik W, Feil R (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64:918–926

    Article  Google Scholar 

  • Ludwig M, Katalinic A, Groß S, Sutcliffe A, Varon R, Horsthemke B (2005) Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet 42:289–291

    Article  PubMed  CAS  Google Scholar 

  • Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR, Barrat CL, Reik W, Hawkins MM (2003) Beckwith-Wiedemann syndrome and assisted reproductive technology (ART). J Med Genet 40:62–64

    Article  PubMed  CAS  Google Scholar 

  • Manes C (1973) The participation of the embryonic genome during early cleavage in the rabbit. Dev Biol 32:453–459

    Article  PubMed  CAS  Google Scholar 

  • Mann MR, Chung YG, Nolen LD, Verona RI, Latham KE, Bartolomei MS (2003) Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol Reprod 69:902–914

    Article  PubMed  CAS  Google Scholar 

  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000a) Demethylation of the zygotic paternal genome. Nature 403:501–502

    PubMed  CAS  Google Scholar 

  • Mayer W, Smith A, Fundele R, Haaf T (2000b) Spatial separation of parental genomes in preimplantation mouse embryos. J Cell Biol 148:629–634

    Article  PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Article  PubMed  CAS  Google Scholar 

  • Memili E, First NL (2000) Zygotic and embryonic gene expression in cow: a review of timing andmechanisms of early gene expression as compared with other species. Zygote 8:87–96

    Article  PubMed  CAS  Google Scholar 

  • Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10:475–478

    Article  PubMed  CAS  Google Scholar 

  • Perreault SD (1992) Chromatin remodeling inmammalian zygotes. Mutat Res 296:43–55

    PubMed  CAS  Google Scholar 

  • Ratnam S, Mertineit C, Ding F, Howell CY, Clarke HJ, Bestor TH, Chaillet JR, Trasler JM (2002) Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev Biol 235:304–314

    Article  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Rougier D, Bourc’his D, Gomes DM, Niveleau A, Plachot M, Pàldi A, Viegas-Péquignot E (1998) Chromosome methylation patterns during mammalian development. Genes Dev 12:2108–2113

    PubMed  CAS  Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  PubMed  CAS  Google Scholar 

  • Schulz RM(1993) Regulation of zygotic gene activation in themouse. BioEssays 8:531–538

    Google Scholar 

  • Shi W, Haaf T (2002) Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev 63:329–334

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Zakhartchenko V, Wolf E (2003) Epigenetic reprogramming in mammalian nuclear transfer. Differentiation 71:91–113

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Dirim F, Wolf E, Zakhartchenko V, Haaf T (2004) Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos. Biol Reprod 71:340–347

    Article  PubMed  CAS  Google Scholar 

  • Solter D (2000) Mammalian cloning: advances and limitations. Nat Rev Genet 1:199–207

    Article  PubMed  CAS  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1986) Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell 45:127–136

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486

    Article  PubMed  CAS  Google Scholar 

  • Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, Broadbent PJ, Robinson JJ, Wilmut I, Sinclair KD (2001) Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 27:153–154

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Haaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haaf, T. (2006). Methylation Dynamics in the Early Mammalian Embryo: Implications of Genome Reprogramming Defects for Development. In: Doerfler, W., Böhm, P. (eds) DNA Methylation: Development, Genetic Disease and Cancer. Current Topics in Microbiology and Immunology, vol 310. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31181-5_2

Download citation

Publish with us

Policies and ethics