Skip to main content

IgA Adaptation to the Presence of Commensal Bacteria in the Intestine

  • Chapter
Book cover Gut-Associated Lymphoid Tissues

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 308))

Abstract

The lower intestine of mammals is colonised by a dense flora composed mainly of non-pathogenic commensal bacteria. These intestinal bacteria have a wide-ranging impact on host immunity and physiology. One adaptation following intestinal colonisation is increased production and secretion of polyspecific intestinal IgA. In contrast to the strong mucosal immune response to bacterial colonisation, the systemic immune system remains ignorant of these organisms in pathogen-free mice. Small numbers of bacteria can penetrate the epithelial surface overlying Peyer’s patches and survive in dendritic cells to induce IgA by T-dependent and T-independent mechanisms. These dendritic cells loaded with live commensal organisms can home to the mesenteric lymph nodes but do not reach systemic secondary lymphoid structures, so induction of mucosal responses is focused inmucosal lymphoid tissues. The secretion of antibodies across the intestinal epithelial surface in turn limits the penetration of commensal organisms, but this is one of many mechanisms which adapt the intestinal mucosa to co-existence with commensal bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723.

    Article  PubMed  CAS  Google Scholar 

  • Bakker R, Lasonder E, Bos NA (1995) Measurement of affinity in serum samples of antigen-free, germ-free and conventional mice after hyperimmunization with 2,4-dinitrophenyl keyhole limpet hemocyanin, using surface plasmon resonance. Eur J Immunol 25:1680–1686.

    PubMed  CAS  Google Scholar 

  • Bauer H, Horowitz RE, Levenson SM, Popper H (1963) The response of lymphatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol 42:471–479.

    PubMed  CAS  Google Scholar 

  • Becker C, Wirtz S, Blessing M, Pirhonen J, Strand D, Bechthold O, Frick J, Galle PR, Autenrieth I, Neurath MF (2003) Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest 112:693–706.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste J, Lespinats G, Adam C, Salomon, J. C. 1971a. Immunoglobulins in intact, immunized, and contaminated axenic mice: study of serum IgA. J Immunol 107:1647–1655.

    PubMed  CAS  Google Scholar 

  • Benveniste J, Lespinats G, Salomon, J. 1971b. Serum and secretory IgA in axenic and holoxenic mice. J Immunol 107:1656–1662.

    PubMed  CAS  Google Scholar 

  • Bjarnason I, Macpherson AJ, Hollander D (1995) Intestinal permeability: an overview. Gastroenterology 108:1566–1581.

    Article  PubMed  CAS  Google Scholar 

  • Bos NA, Jiang HQ, Cebra JJ (2001) T cell control of the gut IgA response against commensal bacteria. Gut 48:762–764.

    Article  PubMed  CAS  Google Scholar 

  • Bouvet JP, Fischetti VA (1999) Diversity of antibody-mediatedimmunity at the mucosal barrier. Infect Immun 67:2687–2691.

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P (1973) Two types of IgA immunocytes inman. Nat New Biol 243:142–143.

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P (1974) Presence of J chain in human immunocytes containing various immunoglobulin classes. Nature 252:418–420.

    Article  PubMed  CAS  Google Scholar 

  • Casola S, Otipoby KL, Alimzhanov M, Humme S, Uyttersprot N, Kutok JL, Carroll MC, Rajewsky K (2004) B cell receptor signal strength determines B cell fate. Nat Immunol 5:317–327.

    Article  PubMed  CAS  Google Scholar 

  • Castigli E, Scott S, Dedeoglu F, Bryce P, Jabara H, Bhan AK, Mizoguchi E, Geha RS (2004) Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci USA 101:3903–3908.

    Article  PubMed  CAS  Google Scholar 

  • Castigli E, Wilson SA, Scott S, Dedeoglu F, Xu S, Lam KP, Bram RJ, Jabara H, Geha RS (2005) TACI and BAFF-Rmediate isotype switching in B cells. J Exp Med 201:35–39.

    Article  PubMed  CAS  Google Scholar 

  • Cohendy M (1912) Experiencecs sur la vie sans microbes. Compt rend 154:533–536.

    Google Scholar 

  • Cohendy M (1914) Experiences sur la vie sansmicrobes, élevage aseptique de cobages. Compt rend 158:1283–1284.

    Google Scholar 

  • Craig SW, Cebra JJ (1971) Peyer’s patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med 134:188–200.

    Article  PubMed  CAS  Google Scholar 

  • Cummings JH, Kong SC (2004) Probiotics, prebiotics and antibiotics in inflammatory bowel disease. Novartis Found Symp 263:99–111; discussion 111–114, 211–118.

    Article  PubMed  CAS  Google Scholar 

  • Cushing H, Livingood LE (1900) Johns Hopkins Hospital Reports 9:543–549.

    Google Scholar 

  • De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, Smith SC, Carlson R, Shornick LP, Strauss-Schoenberger J, et al. 1994. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264:703–707.

    PubMed  Google Scholar 

  • Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES (2005) Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307:1630–1634.

    Article  PubMed  CAS  Google Scholar 

  • Dubos R, Schaedler RW (1960) The effect of the intestinal flora on the growth rate of mice, and on their susceptibility to experimental infections. J Exp Med 111:407–411.

    Article  PubMed  CAS  Google Scholar 

  • Elson CO, Ealding, W. 1984a. Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J Immunol 133:2892–2897.

    PubMed  CAS  Google Scholar 

  • Elson CO, Ealding, W. 1984b. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J Immunol 132:2736–2741.

    PubMed  CAS  Google Scholar 

  • Fagarasan S, Kinoshita K, Muramatsu M, Ikuta K, Honjo T (2001) In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413:639–643.

    Article  PubMed  CAS  Google Scholar 

  • Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T (2002) Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298:1424–1427.

    Article  PubMed  CAS  Google Scholar 

  • Fayette J, Dubois B, Vandenabeele S, Bridon JM, Vanbervliet B, Durand I, Banchereau J, Caux C, Briere F (1997) Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2. J Exp Med 185:1909–1918.

    Article  PubMed  CAS  Google Scholar 

  • Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33.

    Article  PubMed  CAS  Google Scholar 

  • Gardby E, Lane P, Lycke NY (1998) Requirements for B7-CD28 costimulation in mucosal IgA responses: paradoxes observed in CTLA4-Hγ1 transgenic mice. J Immunol 161:49–59.

    PubMed  CAS  Google Scholar 

  • Glimstedt G (1936) Bakterienfrei Meerschweinchen. Aufzucht, Lebensfähigkeit und Wachstum, nebst Untersuchung über das lymphatische Gewebe. Acta Pathol Microbiol Scand Suppl 30:1–295.

    Google Scholar 

  • Gustafsson BE (1959) Vitamin K deficiency in germfree rats. Ann NY Acad Sci 78:166–174.

    PubMed  CAS  Google Scholar 

  • Guy-Grand D, Griscelli C, Vassalli P (1978) The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versus-host conditions. J Exp Med 148:1661–1677.

    Article  PubMed  CAS  Google Scholar 

  • Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, Kaminogawa S, Takahashi-Iwanaga H, Iwanaga T, Kiyono H, Yamamoto H, Ishikawa H (2002) Identification ofmultiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168:57–64.

    PubMed  CAS  Google Scholar 

  • Helgeland L, Vaage JT, Rolstad B, Halstensen TS, Midtvedt T, Brandtzaeg P (1997) Regional phenotypic specialization of intraepithelial lymphocytes in the rat intestine does not depend on microbial colonization. Scand J Immunol 46:349–357.

    Article  PubMed  CAS  Google Scholar 

  • Helgeland L, Vaage JT, Rolstad B, Midtvedt T, Brandtzaeg P (1996) Microbial colonization influences composition and T-cell receptor Vβrepertoire of intraepithelial lymphocytes in rat intestine. Immunology 89:494–501.

    Article  PubMed  CAS  Google Scholar 

  • Holtmeier W, Hennemann A, Caspary WF (2000) IgA and IgM VH repertoires in human colon: evidence for clonally expanded B cells that are widely disseminated. Gastroenterology 119:1253–1266.

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273.

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine (cites personal communication from Joshua Lederberg). Science 291:881–884.

    Article  PubMed  CAS  Google Scholar 

  • Hörnquist CE, Ekman L, Grdic KD, Schön K, Lycke NY (1995) Paradoxical IgA immunity in CD4-deficient mice. J Immunol 155:2877–2887.

    PubMed  Google Scholar 

  • Huang, F.-P., Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG (2000) A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J ExpMed 191:435–444.

    Article  CAS  Google Scholar 

  • Husband AJ, Gowans JL (1978) The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J Exp Med 148:1146–1160.

    Article  PubMed  CAS  Google Scholar 

  • Johansen FE, Brandtzaeg P (2004) Transcriptional regulation of the mucosal IgA system. Trends Immunol 25:150–157.

    Article  PubMed  CAS  Google Scholar 

  • Johansen FE, Pekna M, Norderhaug IN, Haneberg B, Hietala MA, Krajci P, Betsholtz C, Brandtzaeg P (1999) Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin Receptor/Secretory component-deficient mice. J Exp Med 190:915–922.

    Article  PubMed  CAS  Google Scholar 

  • Karrer U, Althage A, Odermatt B, Hengartner H, Zinkernagel RM (2000) Immunodeficiency of alymphoplasia mice (aly/aly) in vivo: structural defect of secondary lymphoid organs and functional B cell defect. Eur J Immunol 30:2799–2807.

    Article  PubMed  CAS  Google Scholar 

  • Kelsall B, Strober W (1996) Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer’s patch. J Exp Med 183:237–247.

    Article  PubMed  CAS  Google Scholar 

  • Litinskiy MB, Nardelli B, Hilbert DM, Schaffer A, Casali P, Cerutti A (2002) Antigen presenting cells induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3:822–829.

    Article  PubMed  CAS  Google Scholar 

  • Lycke N, Holmgren J (1986) Intestinal mucosal memory and presence of memory cells in lamina propria and Peyer’s patches in mice 2 years after oral immunization with cholera toxin. Scand J Immunol 23:611–616.

    Article  PubMed  CAS  Google Scholar 

  • Mackie R, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035S–1045S.

    PubMed  CAS  Google Scholar 

  • Macpherson A, Khoo UY, Forgacs I, Philpott-Howard J, Bjarnason I (1996) Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut 38:365–375.

    PubMed  CAS  Google Scholar 

  • Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM (2000) A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226.

    Article  PubMed  CAS  Google Scholar 

  • Macpherson AJ, Harris N (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485.

    Article  PubMed  CAS  Google Scholar 

  • Macpherson AJ, Lamarre A, McCoy K, Dougan G, Harriman G, Hengartner H, Zinkernagel R (2001) IgA B cell and IgA antibody production in the absence of μand δheavy chain expression early in B cell ontogeny. Nat Immunol 2:625–631.

    Article  PubMed  CAS  Google Scholar 

  • Macpherson AJ, Uhr T (2003) The genomic sequence of the murine alymphoplasia (aly/aly) shows a donor splice site mutation in NFκB-inducing kinase. Immunogenetics 54:693–698.

    PubMed  CAS  Google Scholar 

  • Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665.

    Article  PubMed  CAS  Google Scholar 

  • Manolios N, Geczy CL, Schrieber L (1988) High endothelial venule morphology and function are inducible in germ-free mice: a possible role for interferon-γ. Cell Immunol 117:136–151.

    Article  PubMed  CAS  Google Scholar 

  • Mantis NJ, Cheung MC, Chintalacharuvu KR, Rey J, Corthesy B, Neutra MR (2002) Selective adherence of IgA to murine Peyer’s patch M cells: evidence for a novel IgA receptor. J Immunol 169:1844–1851.

    PubMed  CAS  Google Scholar 

  • McFarland LV, Surawicz CM, Greenberg RN, Fekety R, Elmer GW, Moyer KA, Melcher SA, Bowen KE, Cox JL, Noorani Z, et al. 1994. A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 271:1913–1918.

    Article  PubMed  CAS  Google Scholar 

  • Metchnikoff E (1908) Theprolongation of life. Putman & Sons (reprinted 2003, Springer Publishing Company).

    Google Scholar 

  • Miyakawa M (1959) The lymphatic system of germ free guinea pigs. Ann NY Acad Sci 78:221–236.

    PubMed  CAS  Google Scholar 

  • Miyawaki S, Nakamura Y, Suzuka H, Koba M, Yasumizu R, Ikehara S, Shibata Y (1994) A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur J Immunol 24:429–434.

    PubMed  CAS  Google Scholar 

  • Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC (1978) Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun 21:532–539.

    PubMed  CAS  Google Scholar 

  • Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker, H.-C. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258.

    Article  PubMed  CAS  Google Scholar 

  • Pasparakis M, Alexopoulou L, Grell M, Pfizenmaier K, Bluethmann H, Kollias G (1997) Peyer’s patch organogenesis is intact yet formation of B lymphocyte follicles is defective in peripheral lymphoid organs of mice deficient for tumor necrosis factor and its 55-kDa receptor. Proc Natl Acad Sci USA 94:6319–6323.

    Article  PubMed  CAS  Google Scholar 

  • Pasteur L (1885) Observations relatives a la note de M. Duclaux. Comp rend 100:69.

    Google Scholar 

  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118:229–241.

    Article  PubMed  CAS  Google Scholar 

  • Reyniers JA (1959) The pure culture concept and gnotobiotics. Ann NY Acad Sci 78:3–16.

    Google Scholar 

  • Roy MJ, Varvayanis M (1987) Development of dome epithelium in gut-associated lymphoid tissues: association of IgA with M cells. Cell Tissue Res 248:645–651.

    Article  PubMed  CAS  Google Scholar 

  • Sansonetti PJ (2004) War and peace at mucosal surfaces. Nat Rev Immunol 4:953–964.

    Article  PubMed  CAS  Google Scholar 

  • Schrader CE, Cebra JJ (1993) Dendritic cell dependent expression of IgA by clones in T/B microcultures. Adv Exp Med Biol 329.

    Google Scholar 

  • Shikina T, Hiroi T, Iwatani K, Jang MH, Fukuyama S, Tamura M, Ishikawa H, Kiyono H (2004) IgA class switch occurs in the organized nasopharynx-and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol 172:6259–6264.

    PubMed  CAS  Google Scholar 

  • Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C (1999) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10:29–38.

    Article  PubMed  CAS  Google Scholar 

  • Shinkura R, Kitada K, Matsuda F, Tashiro K, Ikuta K, Suzuki M, Kogishi K, Serikawa T, Honjo T (1999) Alymphoplasia is caused by a point mutation in the mouse gene encoding NF-κB-inducing kinase. Nat Genet 22:74–77.

    Article  PubMed  CAS  Google Scholar 

  • Shroff KE, Meslin K, Cebra JJ (1995) Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun 63:3904–3913.

    PubMed  CAS  Google Scholar 

  • Snider DP, Liang H, Switzer I, Underdown BJ (1999) IgA production in MHC class II-deficient mice is primarily a function of B-1a cells. Int Immunol 11:191–198.

    Article  PubMed  CAS  Google Scholar 

  • Snider DP, Marshall JS, Perdue MH, Liang H (1994) Production of IgE antibody and allergic sensitization of intestinal and peripheral tissues after oral immunization with protein Ag and cholera toxin. J Immunol 153:647–657.

    PubMed  CAS  Google Scholar 

  • Stoel M, Jiang, H.-Q., van Diemen CC, Bun, J. C. A.M., Dammers PM, Thurnheer MC, Kroese, F. G. M., Cebra JJ, Bos NA (2005) Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. J Immunol 174:1046–1054.

    PubMed  CAS  Google Scholar 

  • Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, Fagarasan S (2004) Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 101:1981–1986.

    Article  PubMed  CAS  Google Scholar 

  • Takimoto H, Nakamura T, Takeuchi M, Sumi Y, Tanaka T, Nomoto K, Yoshikai Y (1992) Age-associated increase in number of CD4+CD8+ intestinal intraepithelial lymphocytes in rats. Eur J Immunol 22:159–164.

    PubMed  CAS  Google Scholar 

  • Thorbecke GJ (1959) Some histological and functional aspects of lymphoid tissue in germfree animals. Ann NY Acad Sci 78:237–246.

    PubMed  CAS  Google Scholar 

  • Tissier H (1905) Ann Inst Pasteur XIX:109–120.

    Google Scholar 

  • Tvede M, Rask-Madsen J (1989) Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 1:1156–1160.

    Article  PubMed  CAS  Google Scholar 

  • Umesaki Y, Setoyama H, Matsumoto S, Okada Y (1993) Expansion of αβT-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79:32–37

    PubMed  CAS  Google Scholar 

  • Vajdy M, Kosco-Vilbois MH, Kopf M, Kohler G, Lycke N (1995) Impaired mucosal immune responses in interleukin 4-targeted mice. J Exp Med 181:41–53.

    Article  PubMed  CAS  Google Scholar 

  • Weltzin R, Lucia-Jandris P, Michetti P, Fields BN, Kraehenbuhl JP, Neutra MR (1989) Binding and transepithelial transport of immunoglobulins by intestinal M cells: demonstration using monoclonal IgA antibodies against enteric viral proteins. J Cell Biol 108:1673–1685.

    Article  PubMed  CAS  Google Scholar 

  • Williams GT, Jolly CJ, Kohler J, Neuberger MS (2000) The contribution of somatic hypermutation to the diversity of serum immunoglobulin: dramatic increase with age. Immunity 13:409–417.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Kweon, M.-N., Rennert PD, Hiroi T, Fujihashi K, McGhee JR, Kiyono H (2004) Role of gut-associated lymphoreticular tissues inantigen-specific intestinal IgA immunity. J Immunol 173:762–769.

    PubMed  CAS  Google Scholar 

  • Yamanaka T, Helgeland L, Farstad IN, Fukushima H, Midtvedt T, Brandtzaeg P (2003) Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer’s patches. J Immunol 170:816–822.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Macpherson, A.J. (2006). IgA Adaptation to the Presence of Commensal Bacteria in the Intestine. In: Honjo, T., Melchers, F. (eds) Gut-Associated Lymphoid Tissues. Current Topics in Microbiology and Immunology, vol 308. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30657-9_5

Download citation

Publish with us

Policies and ethics