Skip to main content

Imaging Lymph Nodes Using CT and MRI, Imaging Cancer by PET

  • Chapter
Image-Guided IMRT
  • 2494 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suit H (2002). The Gray Lecture 2001: coming technical advances in radiation oncology. Int J Radiat Oncol Biol Phys 53:798–809

    Article  PubMed  Google Scholar 

  2. Enami B, Sethi A, Petruzelli GJ (2003) Influence of MRI on target delineation and IMRT planning in nasopharyngeal carcinoma Int J Radiat Oncol Biol Phys 57:481–488

    Article  Google Scholar 

  3. Intensity-Modulated Radiation Therapy Collaborative Working Group (2001) Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 53:1088–1089

    Google Scholar 

  4. Fischbein NJ, Noworolski SM, Henry RG, Kaplan MJ, Dillon WP, Nelson SJ (2003) Assessment of metastatic cervical adenopathy using dynamic contrast-enhanced MR imaging. AJNR — Am J Neuroradiol 24:301–311

    PubMed  Google Scholar 

  5. Sumi M, Sakihama N, Sumi T, Morikawa M, Uetani M, Kabasawa H, Shigeno K, Hayashi K, Takahashi H, Nakamura T (2003) Discrimination of metastatic cervical lymphnode with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR — Am J Neuroradiol 24:1627–1634

    PubMed  Google Scholar 

  6. Curtin HD, Ishwaran H, Mancuso AA, Dalley RW, Caudry DJ, McNeil BJ (1998) Comparison of CT and MR imaging in staging of neck metastases. Radiology 207:123–130

    PubMed  CAS  Google Scholar 

  7. King AD, Tse GM, Ahuja AT, Yuen EH, Vlantis AC, To EW, van Hasselt AC (2004) Necrosis in metastatic neck nodes: diagnostic accuracy of CT, MR imaging, and US. Radiology 230:720–726

    PubMed  Google Scholar 

  8. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). Description of system. Br J Radiol 46:1016–1022

    Article  PubMed  CAS  Google Scholar 

  9. Towers JM (1993) Spiral or helical CT? Am J Roentgenol 161(4):901–902

    CAS  Google Scholar 

  10. Kalender WA et al. (1994) A comparison of conventional and spiral CT: an experimental study on the detection of spherical lesions. J Comput Assist Tomogr 18:167–176

    PubMed  CAS  Google Scholar 

  11. Wang G, Vannier MW (1994) Longitudinal resolution in volumetric X-ray CT-analytical comparison between conventional and helical CT. Med Phys 21:429–433

    Article  PubMed  CAS  Google Scholar 

  12. Wang G et al. (1994) Theoretical FWTM values in helical CT. Med Phys 21:753–754

    Article  PubMed  CAS  Google Scholar 

  13. Fuchs T et al. (2000) Technical advances in multi-slice spiral CT. Eur J Radiol 36:69–73

    Article  PubMed  CAS  Google Scholar 

  14. Klingenbeck-Regn K et al. (1999) Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 31:110–124

    Article  PubMed  CAS  Google Scholar 

  15. Petterson H (1995) The NICER centennial book. A global textbook of radiology. Nicer Institute, Oslo

    Google Scholar 

  16. Naidich DP et al. (1999) Computed tomography and magnetic resonance of the thorax. Lippincott-Raven, Philadelphia

    Google Scholar 

  17. Sakai O et al. (2000) Lymph node pathology. Benign proliferative lymphoma, and metastatic disease. Radiol Clin North Am 5:979–998

    Article  Google Scholar 

  18. Van den Brekel MWM, Castelijns JA (2000) Imaging of lymph nodes in the neck. Semin Roentgenol 1:42–53

    Google Scholar 

  19. Rydberg J et al. (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20:1787–1806

    PubMed  CAS  Google Scholar 

  20. Rubin GD et al. (1998) Thoracic spiral CT: influence of subsecond gantry rotation on image quality. Radiology 208:771–776

    PubMed  CAS  Google Scholar 

  21. Wang G, Vannier MW (1997) Optimal pitch in spiral computed tomography. Med Phys 24:1635–1639

    Article  PubMed  CAS  Google Scholar 

  22. Mancuso AA et al. (1983) Computed tomography of cervical and retropharyngeal lymph nodes: normal anatomy, variants of normal, and application in staging head and neck cancer. Radiology 148:715–723

    PubMed  CAS  Google Scholar 

  23. Som PM (1987) Lymph nodes of the neck. Radiology 165:593–600

    PubMed  CAS  Google Scholar 

  24. Harris EW et al. (1996) Enhanced CT of the neck: improved visualization of lesions with delayed imaging. Am J Roentgenol 167:1057–1058

    CAS  Google Scholar 

  25. Sakai O et al. (1997) Asymmetrical or heterogenous enhancement of the internal jugular veins in contrast-enhanced CT of the head and neck. Neuroradiology 39:292–295

    Article  PubMed  CAS  Google Scholar 

  26. Leung AN (1997) Spiral CT of the thorax in daily practice: optimization of the technique. J Thoracic Imag 12:2–10

    Article  CAS  Google Scholar 

  27. Han JK et al. (2000) Factors influencing vascular and hepatic enhancement at CT: experimental study on injection protocol using a canine model. J Comput Assist Tomogr 24:400–406

    Article  PubMed  CAS  Google Scholar 

  28. Cline HE et al. (1991) 3D surface rendered MR images of the brain and its vasculature. J Comput Assist Tomogr 15:344–351

    PubMed  CAS  Google Scholar 

  29. Magnusson M et al. (1991) Evaluation of methods for shaded surface display of CT volumes. Comput Med Imaging Graphics 15:247–256

    Article  CAS  Google Scholar 

  30. Rouviére H (1948) Anatomie humaine descriptive et topographique, 6th edn. Masson, Paris

    Google Scholar 

  31. Grégoire V et al. (2000) Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. Radiother Oncol 56:135–150

    Article  PubMed  Google Scholar 

  32. Som PM et al. (1999) An imaging-based classification for the cervical nodes designed as an adjunct to recent clinically based nodal classifications. Arch Otolaryngol Head Neck Surg 125:388–396

    PubMed  CAS  Google Scholar 

  33. Cymbalista M et al. (1999) CT demonstration of the 1996 AJCC-UICC regional lymph node classification for lung cancer staging. Radiographics 19:899–900

    PubMed  CAS  Google Scholar 

  34. American Joint Committee on Cancer (1992) Lung. In: Beahrs OH, Henson DE, Hutter RVP et al. (eds) Manual for staging cancer, 4th edn. Lippincott, Philadelphia, pp 115–121

    Google Scholar 

  35. American Thoracic Society (1983) Medical Section of the American Lung Association. Clinical staging of primary lung cancer. Am Rev Respir Dis 127:659–664

    Google Scholar 

  36. Van den Brekel MWM et al. (1990a) Cervical lymph node metastasis: assessment of radiologic criteria. Radiology 177:379–384

    PubMed  Google Scholar 

  37. Som PM (1992) Detection of metastasis in cervical lymph nodes: CT and MR criteria and differential diagnosis. Am J Roentgenol 158:961–969

    CAS  Google Scholar 

  38. McLoud TC et al. (1992) Bronchogenic carcinoma: analysis of staging in the mediastinum with CT by correlative lymph node mapping and sampling. Radiology 182:319–323

    PubMed  CAS  Google Scholar 

  39. Dorfman RE et al. (1991) Upper abdominal lymph nodes: criteria for normal size determined with CT. Radiology 180:319–322

    PubMed  CAS  Google Scholar 

  40. Yousem DM et al. (1992) Central nodal necrosis and extracapsular neoplastic spread in cervical lymph nodes: MR imaging versus CT. Radiology 182:753–759

    PubMed  CAS  Google Scholar 

  41. Dolan PA (1963) Tumor calcification following therapy. Am J Roentgenol 89:166–174

    CAS  Google Scholar 

  42. Eisenkraft BL, Som PM (1999) The spectrum of benign and malignant etiologies of cervical node calcification. Am J Roentgenol 172:1433–1437

    CAS  Google Scholar 

  43. Ghahremani GG, Straus FH (1971) Calcification of distant lymph node metastases from carcinoma of colon. Radiology 99:65–66

    PubMed  CAS  Google Scholar 

  44. Laissey JP et al. (1994) Enlarged mediastinal lymph nodes in bronchogenic carcinoma: assessment with dynamic contrast-enhanced MR imaging. Radiology 191:263–267

    Google Scholar 

  45. Hennig J et al. (1986) RARE-imaging. A fast imaging method for clinical MR. Magn Reson Med 3:829–833

    Google Scholar 

  46. Fullbright et al. (1994) MR of the head and neck: comparison of fast spin-echo and conventional spin-echo sequences. Am J Neuroradiol 15:767–773

    Google Scholar 

  47. Held P, Breit A (1994) MRI and CT of tumors of the pharynx: comparison of two imaging procedures including fast and ultrafast MR sequences Eur J Radiol 18:81–89

    Article  PubMed  CAS  Google Scholar 

  48. Yousem DM, Hurst RW (1994) MR of cervical lymph nodes: comparison of fast spin echo and conventional T2 W scans. Clin Radiol 49:670–675

    Article  PubMed  CAS  Google Scholar 

  49. Mitchell DG (1999) MRI principles. Saunders, Philadelphia

    Google Scholar 

  50. Rinck PA (1993) Magnetic resonance in medicine — the basic textbook of the European MR forum, 3rd edn. Blackwell Scientific, London

    Google Scholar 

  51. Chong VFH et al. (1996) MR features of cervical node necrosis in metastatic disease. Clin Radiol 51:103–109

    Article  PubMed  CAS  Google Scholar 

  52. Van den Brekel MWM et al. (1990b) Detection and characterization of of metastatic cervical adenopathies by MR imaging: comparison of different MR techniques. J Comput Assist Tomogr 14:581–589

    PubMed  Google Scholar 

  53. Van den Brekel MWM, Castelijns JA (1999) New developments in imaging of neck node metastases. In: Mukherji SK, Castelijns JA (eds) Modern head and neck imaging. Springer, Berlin Heidelberg New York

    Google Scholar 

  54. Anzaï Y, Prince MR (1997) Iron-oxide enhanced MR lymphography: the evaluation of cervical lymph node metastases in head and neck cancer. J Magn Reson Imag 7:75–81

    Google Scholar 

  55. Harika et al. (1996) Macromolecular intravenous contrast agent for MR lymphography: characterization and efficacy studies. Radiology 198:365–370

    PubMed  CAS  Google Scholar 

  56. Hoffman HT et al. (2000) Functional magnetic resonance imaging using iron oxide particles in characterizing head and neck adenopathy. Laryngoscope 110:1425–1430

    Article  PubMed  CAS  Google Scholar 

  57. Fujimoto Y et al. (2000) Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium diethylenetriamine pentaacetic acid. Biol Pharm Bull 23:97–100

    PubMed  CAS  Google Scholar 

  58. Misselwitz B et al. (1999) Gadoflurorine 8: initial experience with a new contrast medium for interstitial MR lymphography. MAGMA 8:190–195

    PubMed  CAS  Google Scholar 

  59. Staatz G et al. (2001) Interstitial T1-weighted MR lymphography: lipophilic perfluorinated gadolinium chelates in pigs. Radiology 220:129–136

    PubMed  CAS  Google Scholar 

  60. Dooms GC et al. (1985) Characterization of lymphadenopathy by magnetic resonance relaxation times: preliminary results. Radiology 155:691–697

    PubMed  CAS  Google Scholar 

  61. Grossman RI et al. (1994) Magnetization transfer: theory and applications in neuroradiology. Radiographics 14:279–90

    PubMed  CAS  Google Scholar 

  62. Lebihan D, Turner R (1991) Intravoxel incoherent motion imaging using spin echoes. Magn Reson Med 19:211–227

    Google Scholar 

  63. Wiener JI et al. (1986) Breast and axillary tissue MR imaging: correlation of the signal intensities and relaxation times with pathological findings. Radiology 160:299–305

    PubMed  CAS  Google Scholar 

  64. Yousem DM (1999) Magnetization transfer imaging of the extracranial head and neck. In: Mukherji SK, Castelijns JA (eds) Modern head and neck imaging. Springer, Berlin Heidelberg New York

    Google Scholar 

  65. Gillams et al. (1996) Magnetization transfer contrast MR in lesions of the head and neck. Am J Neuroradiol 17:355–360

    PubMed  CAS  Google Scholar 

  66. Sheppard LM, Yousem DM (1994) MTI of cervical adenopathies. ASNR, paper 130

    Google Scholar 

  67. Petrella J, Provenzale J (2000) MR perfusion of the brain: techniques and applications. Am J Roentgenol 175:207–19

    CAS  Google Scholar 

  68. Carrington B (1998) Lymph nodes. In: Husband JHS, Reznek RH (eds) Imaging in oncologic. Isis Medical Media, Oxford, pp 729–748

    Google Scholar 

  69. Dillon WP, Harnsberger HR (1991) The impact of radiologic imaging on staging of cancer of the head and neck. Semin Oncol 18:64–79

    PubMed  CAS  Google Scholar 

  70. Gussack GS, Hudgins PA (1991) Imaging modalities in recurrent head and neck tumors. Laryngoscope 101:119–124

    PubMed  CAS  Google Scholar 

  71. Mukherji SK et al. (2000) The ability of dual camera coincidence tomography 18F fluorodeoxyglucose imaging to differentiate recurrent head and neck SCC from post-treatment changes. The Radiological Society of North America, 88th annual scientific assembly, Chicago, paper 473

    Google Scholar 

  72. Vuillez JP (1998) Métabolisme glucidique des cellules tumorales: conséquences pour l’utilisation de radiopharmaceutiques analogues du glucose. Med Nucl Imag Fonct Metab 22:9–29

    Google Scholar 

  73. Warburg O (1930) The metabolism of tumors. Arnold Constable, London, pp 75–327

    Google Scholar 

  74. Brown R, Wahl R (1993) Overexpression of GLUT-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72:2979–2985

    PubMed  CAS  Google Scholar 

  75. Brown R et al. (1996) Intratumoral distribution of tritiated FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 37:1043–1047

    Google Scholar 

  76. Mellanen P et al. (1994) Expression of glucose transporters in head and neck tumors. Int J Cancer 56:622–629

    PubMed  CAS  Google Scholar 

  77. Reske S et al. (1997) Overexpression of glucose transporter and increased FDG uptake in pancreatic carcinoma. J Nucl Med 38:1344–1348

    PubMed  CAS  Google Scholar 

  78. Younes M et al. (1995) GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res 15:2895–2898

    PubMed  CAS  Google Scholar 

  79. Burgman P et al. (2001) Hypoxia-induced increase in FDG uptake in MCF7 cells. J Nucl Med 42:170–175

    PubMed  CAS  Google Scholar 

  80. Bustamente E, Pedersen P (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 74:3735–3739

    Google Scholar 

  81. Weber G, Cantero A (1955) Glucose-6-phosphatase activity in normal, precancerous, and neoplastic tissues. Cancer Res 15:105–108

    PubMed  CAS  Google Scholar 

  82. Kubota R et al. (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980

    PubMed  CAS  Google Scholar 

  83. Delbeke D et al. (1999) FDG PET and dual-head gamma camera positron coincidence detection imaging of suspected malignancies and brain disorders. J Nucl Med 40:110–117

    PubMed  CAS  Google Scholar 

  84. Landoni C et al. (1999) Comparison of dual-head coincidence PET versus ring PET in tumor patients. J Nucl Med 40:1617–1622

    PubMed  CAS  Google Scholar 

  85. Lonneux M et al. (1998) Can dual-headed 18F-FDG SPECT imaging reliably supersede PET in clinical oncology? A comparative study in lung and gastrointestinal tract cancer. Nucl Med Commun 19:1047–1054

    Article  PubMed  CAS  Google Scholar 

  86. Martin W et al. (1995) FDG-SPECT: correlation with FDG-PET. J Nucl Med 36:988–995

    PubMed  CAS  Google Scholar 

  87. Shreve P et al. (1998) Oncologic diagnosis with 2-[fluorine-18]fluoro-2-deoxy-d-glucose imaging: dual-head coincidence gamma camera versus positron emission tomographic scanner. Radiology 207:431–437

    PubMed  CAS  Google Scholar 

  88. Tatsumi M et al. (1999) Feasibility of fluorodeoxyglucose dual-head gamma camera coinidence imaging in the evaluation of lung cancer: comparison with FDG PET. J Nucl Med 40:566–573

    PubMed  CAS  Google Scholar 

  89. Weber W et al. (1999) Assessment of pulmonary lesions with 18F-fluorodeoxyglucose positron imaging using coincidence mode gamma cameras. J Nucl Med 40:574–578

    PubMed  CAS  Google Scholar 

  90. Stokkel M et al. (2000) Preoperative evaluation of patients with primary head and neck cancer using dual-head 18-fluorodeoxyglucose positron emission tomography. Ann Surg 231:229–234

    Article  PubMed  CAS  Google Scholar 

  91. Langen K et al. (1993) The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 34:355–359

    PubMed  CAS  Google Scholar 

  92. Torizuka T et al. (1998) Effect of insulin on uptake of FDG by experimental mammary carcinoma in diabetic rats. Radiology 208:499–504

    PubMed  CAS  Google Scholar 

  93. Barrington S, Maisey M (1996) Skeletal muscular uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 37:1127–1129

    PubMed  CAS  Google Scholar 

  94. Lonneux M et al. (1999) Attenuation correction in whole body FDG oncological studies: the role of statistical reconstruction. Eur J Nucl Med 6:591–598

    Article  Google Scholar 

  95. Hustinx R et al. (2000) Impact of attenuation correction on the accuracy of FDG-PET in patient with abdominal tumors: a free-response ROC analysis. Eur J Nucl Med 27:1365–1371

    Article  PubMed  CAS  Google Scholar 

  96. Vansteenkiste JF, Mortelmans L (1999) FDG-PET in the locoregional lymph node staging of non-small cell lung cancer: a comprehensive review of the Leuven lung cancer group experience. Clin Pos Imaging 2:223–231

    Article  Google Scholar 

  97. Vansteenkiste JF et al. (1998b) FDG-PET scan in potentially operable non-small cell lung cancer: do anatomometabolic PET-CT fusion images improve the localisation of regional lymph node metastases? Eur J Nucl Med 25:1495–1501

    Article  PubMed  CAS  Google Scholar 

  98. Giraud P et al. (2001) CT and (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 49:1249–1257

    Article  PubMed  CAS  Google Scholar 

  99. Vanuystel L, Vansteenkiste JF, Stroobants S et al. (2000) The impact of (18)F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55:317–324

    Article  Google Scholar 

  100. Nestle U et al. (1999) 18F-deoxyglucose positrom emission tomogrpahy (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597

    Article  PubMed  CAS  Google Scholar 

  101. Nehmeh SA, Ford E, Rosenzweig K et al. (2001) Gated positron emission tomography: a technique for reducing lung tumor motion effect. J Nucl Med 42:34P

    Google Scholar 

  102. Braams J et al. (1995) Detection of lymph node metastases of squamous-cell cancer of the head and neck with FDG-PET and MRI. J Nucl Med 36:211–216

    PubMed  CAS  Google Scholar 

  103. Myers L et al. (1998) Positron emission tomography in the evaluation of the N0 neck. Laryngoscope 108:232–236

    Article  PubMed  CAS  Google Scholar 

  104. Aassar et al. (1999) Metastatic head and neck cancer: role and usefulness of FDG PET in locating occult primary tumors. Radiology 210:177–181

    PubMed  CAS  Google Scholar 

  105. Bohuslavizki KH et al. (2000) FDG PET detection of unknown primary tumors. J Nucl Med 41:816–822

    PubMed  CAS  Google Scholar 

  106. Hanasono MM et al. (1999) Uses and limitations of FDG positron emission tomography in patients with head and neck cancer. Laryngoscope 109:880–885

    Article  PubMed  CAS  Google Scholar 

  107. Moog F et al. (1997) Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) PET in nodal staging. Radiology 203:795–800

    PubMed  CAS  Google Scholar 

  108. Moog F et al. (1998a) 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 16:603–609

    PubMed  CAS  Google Scholar 

  109. Moog F et al. (1998b) Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206:475–481

    PubMed  CAS  Google Scholar 

  110. Shah N et al. (2000) The impact of FDG positron emission tomography imaging on the management of lymphomas. Br J Radiol 73:482–487

    PubMed  CAS  Google Scholar 

  111. Flamen P et al. (2000) Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma. J Clin Oncol 18:3202–3210

    PubMed  CAS  Google Scholar 

  112. Lerut T et al. (2000) Hitopathologic validation of lymph node staging with FDG-PET scan in cancer of the esophagus and gastroesophageal junction. Aprospective study based on primary surgery with extensive lymphadenectomy. Ann Surg 232:743–752

    Article  PubMed  CAS  Google Scholar 

  113. Block M et al. (1997) Improvement in staging of esophageal cancer with the addition of positron emission tomography. Ann Thorac Surg 64:770–776

    Article  PubMed  CAS  Google Scholar 

  114. Cremerius U et al. (1998) FDG-PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med 39:815–822

    PubMed  CAS  Google Scholar 

  115. Adler L et al. (1997) Axillary lymph node metastases: screening with [F-18]2-deoxy-2-d-glucose (FDG) PET. Radiology 203:323–327

    PubMed  CAS  Google Scholar 

  116. Avril N et al. (1996) Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabelled 2-(fluorine-18)-fluoro-2-deoxy-d-glucose. J Natl Cancer Inst 88:1204–1209

    PubMed  CAS  Google Scholar 

  117. Abdel-Nabi H et al. (1998) Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 206:755–760

    PubMed  CAS  Google Scholar 

  118. Diederichs C et al. (2000) Values and limitations of 18F-fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas 20:109–116

    Article  PubMed  CAS  Google Scholar 

  119. Sugawara Y et al. (1999) Evaluation of FDG PET in patients with cervical cancer. J Nucl Med 40:1125–1131

    PubMed  CAS  Google Scholar 

  120. Daisne JF, Duprez Th, Weynand B, Lonneux M, Hamoir M, Reychler H, Grégoire V (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233:93–100

    PubMed  Google Scholar 

  121. Schwartz DL, Ford E, Rajendran J, Yueh B, Coltrera MD, Virgin J, Anzai Y, Haynor D, Lewellyn B, Mattes D, Meyer J, Phillips M, Leblanc M, Kinahan P, Krohn K, Eary J, Laramore GE (2005) FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 61:129–36

    Article  PubMed  Google Scholar 

  122. Star-Lack JM, Adalsteinsson E, Adam MF, Terris DJ, Pinto HA, Brown JM, Spielman DM (2000) In Vivo 1H MR spectroscopy of human head and neck lymph node metastasis and comparison with oxygen tension measurements. AJNR — Am J Neuroradiol 21:183–193

    PubMed  CAS  Google Scholar 

  123. King AD, Yeung DK, Ahuja AT, Leung SF, Tse GM, van Hasselt (2004) In vivo proton MR spectroscopy of primary and nodal nasopharyngeal carcinoma. AJNR — Am J Neuroradiol 25:484–490

    PubMed  Google Scholar 

  124. Chin R et al. (1995) Mediastinal staging of non-small-cell lung cancer with positron emission tomography. Am J Respir Crit Care Med 152:2090–2096

    PubMed  Google Scholar 

  125. Patz E et al. (1995) Thoracic nodal staging with PET imaging with 18FDG in patients with bronchogenic carcinoma. Chest 108:1617–1621

    PubMed  Google Scholar 

  126. Sazaki M et al. (1996) The usefulness of FDG positron emission tomography for the detection of mediastinal lymphnode metastases in patients with non-small cell lung cancer: a comparative study with X-ray computed tomography. Eur J Nucl Med 23:741–747

    Article  Google Scholar 

  127. Sazon D et al. (1996) Fluorodeoxyglucose positron emission tomography in the detection and staging of lung cancer. Am J Respir Crit Care Med 153:417–421

    PubMed  CAS  Google Scholar 

  128. Scott W et al. (1996) Mediastinal lymph node staging of non-small cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. J Thorac Cardiovasc Surg 111:642–648

    Article  PubMed  CAS  Google Scholar 

  129. Steinert H et al. (1997) Non-small cell lung cancer: nodal staging with FDGPET versus CT with correlative lymph node mapping and sampling. Radiology 202:441–446

    PubMed  CAS  Google Scholar 

  130. Valk P et al. (1995) Staging non-small cell lung cancer by whole-body positron emision tomographic imaging. Ann Thorac Surg 60:1573–1582

    Article  PubMed  CAS  Google Scholar 

  131. Wahl RL et al. (1994) Staging of mediastinal non-small cell lung cancer FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology 191:371–377

    PubMed  CAS  Google Scholar 

  132. Vansteenkiste JF et al. (1998a) Lymph node staging in non-small cell lung cancer with FDG-PET scan: a prospective study on 690 lymph node stations from 68 patients. J Clin Oncol 16:2142–2149

    PubMed  CAS  Google Scholar 

  133. Bury T et al. (1996) Staging of the mediastinum: value of positron emission tomography imaging in non-small cell lung cancer. Eur Respir J 9:2560–2564

    Article  PubMed  CAS  Google Scholar 

  134. Guhlmann A et al. (1997) Lymph node staging in non-small cell lung cancer: evaluation by [F]FDG positron emission tomography (PET). Thorax 52:438–441

    Article  PubMed  CAS  Google Scholar 

  135. Laubenbacher C et al. (1995) Comparison of fluorine-18-fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. J Nucl Med 36:1747–1757

    PubMed  CAS  Google Scholar 

  136. Adams S et al. (1998) Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J NuclMed 25:1255–1260

    Article  CAS  Google Scholar 

  137. Benchaou M et al. (1996) The role of FDG-PET in the preoperative assessment of N-staging in head and neck cancer. Acta Otolaryngol 116:332–335

    PubMed  CAS  Google Scholar 

  138. DiMartino E et al. (2000) Diagnosis and staging of head and neck caner. Arch Otolaryngol Head Neck Surg 126:1457–1461

    CAS  Google Scholar 

  139. Paulus P et al. (1998) 18FDG-PET for the assessment of primary head and neck tumors: clinical, computed tomography and histopathological correlation in 38 patients. Laryngoscope 108:1578–1583

    Article  PubMed  CAS  Google Scholar 

  140. Brink J (1995) Technical aspects of helical (spiral) CT. Radiol Clin North Am 33:834–851

    Google Scholar 

  141. Kalender WA et al. (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176:181–183

    PubMed  CAS  Google Scholar 

  142. Ruehm SG, Schroeder T, Debatin JF (2001) Interstitial lymphography with gadoterate meglumine: initial experience in humans Radiology 220:816–821

    PubMed  CAS  Google Scholar 

  143. Mack MG, Balzer JO, Straub R, Eichler K, Vogl TJ (2002) Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 222:239–44

    PubMed  Google Scholar 

  144. Sigal R, Vogl T, Casseman J et al. (2002) Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic oxide particles (Sinerem MR) Results of Phase-III multicenter clinical trial. Eur Radiol 12:957–8

    Article  Google Scholar 

  145. Bulte JW, Kraitchmann DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–99

    Article  PubMed  CAS  Google Scholar 

  146. Fischbein NJ, Noworolski SM, Henry RG, Kaplan MJ, Dillon WP, Nelson SJ (2003) Assessment of metastatic cervical adenopathy using dynamic contrast-enhanced MR imaging. AJNR — Am J Neuroradiol 24:301–11

    PubMed  Google Scholar 

  147. Noworolski SM, Fischbein, NJ, Kaplan MJ, Lu Y, Nelson SJ, Carvajal L, Henry RG (2003) Challenges in dynamic contrast-enhanced MRI imaging of cervical lymph nodes to detect metastatic disease. JMRI — J Magn Reson Imaging 17:455–62

    Article  Google Scholar 

  148. Shah GV, Fischbein NJ, Patel R, Mukherji SK (2003) Newer MR imaging techniques for head and neck. Magn Reson Imaging Clin N Am 11:449–69

    Article  PubMed  Google Scholar 

  149. Shah GV, Fischbein NJ, Gandhi D, Mukherji SK (2004) Dynamic contrast-enhanced MR imaging. Top Magn Reson Imaging 15:71–77

    Article  PubMed  Google Scholar 

  150. Ruehm SG, Schroeder T, Debatin JF (2001) Interstitial lymphography with gadoterate meglumine: initial experience in humans Radiology 220:816–821

    PubMed  CAS  Google Scholar 

  151. Mack MG, Balzer JO, Straub R, Eichler K, Vogl TJ (2002) Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 222:239–244

    PubMed  Google Scholar 

  152. Sigal R, Vogl T, Casseman J et al. (2002) Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic oxide particles (Sinerem MR) Results of Phase-III multicenter clinical trial. Eur Radiol 12:957–958

    Article  Google Scholar 

  153. Bulte JW, Kraitchmann DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  PubMed  CAS  Google Scholar 

  154. Sumi M, Sakihama N, Sumi T, Morikawa M, Uetani M, Kabasawa H, Shigeno K, Hayashi K, Takahashi H, Nakamura T (2003) Discrimination of metastatic cervical lymphnode with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR — Am J Neuroradiol 24:1627–1634

    PubMed  Google Scholar 

  155. Fischbein NJ, Noworolski SM, Henry RG, Kaplan MJ, Dillon WP, Nelson SJ (2003) Assessment of metastatic cervical adenopathy using dynamic contrast-enhanced MR imaging. AJNR — Am J Neuroradiol 24:301–311

    PubMed  Google Scholar 

  156. Noworolski SM, Fischbein, NJ, Kaplan MJ, Lu Y, Nelson SJ, Carvajal L, Henry RG (2003) Challenges in dynamic contrast-enhanced MRI imaging of cervical lymph nodes to detect metastatic disease. JMRI — J Magn Reson Imaging 17:455–462

    Article  Google Scholar 

  157. Shah GV, Fischbein NJ, Patel R, Mukherji SK (2003) Newer MR imaging techniques for head and neck. Magn Reson Imaging Clin N Am 11:449–469

    Article  PubMed  Google Scholar 

  158. Shah GV, Fischbein NJ, Gandhi D, Mukherji SK (2004) Dynamic contrast-enhanced MR imaging. Top Magn Reson Imaging 15:71–77

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duprez, T., Coche, E.E., Lonneux, M. (2006). Imaging Lymph Nodes Using CT and MRI, Imaging Cancer by PET. In: Bortfeld, T., Schmidt-Ullrich, R., De Neve, W., Wazer, D.E. (eds) Image-Guided IMRT. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30356-1_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-30356-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20511-1

  • Online ISBN: 978-3-540-30356-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics