Skip to main content

Instrumentation and Data Acquisition

  • Chapter
Diagnostic Nuclear Medicine

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anger H (1958) Scintillation camera. Rev Sci Instr 29:27–33

    Article  CAS  Google Scholar 

  • Anger H, Davis D (1964) Gamma-ray detection efficiency and image resolution in sodium iodide. Rev Sci Instr 35:693–697

    Article  CAS  Google Scholar 

  • Bacharach SL, Buvat I (1995) Attenuation correction in cardiac positron emission tomography and single-photon emission computed tomography. J Nucl Cardiol 2:246–255

    CAS  PubMed  Google Scholar 

  • Bailey D (1998) Transmission scanning in emission tomography. Eur J Nucl Med 25:774–787

    Article  CAS  PubMed  Google Scholar 

  • Bailey D, Young H, Bloomfield P et al. (1997) ECAT ART — a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 24:6–15

    CAS  PubMed  Google Scholar 

  • Bedigian M, Benard F, Smith R et al. (1998) Whole-body positron emission tomography for oncology imaging using singles transmission scanning with segmentation and ordered subsets-expecteation maximization (OS-EM) reconstruction. J Nucl Med 25:659–661

    CAS  Google Scholar 

  • Bendriem B, Townsend D (1998) The theory and practice of 3D PET. Kluwer Academic, Dordrecht

    Google Scholar 

  • Bengel F, Ziegler S, Avril N et al. (1997) Whole-body positron emission tomography in clinical oncology: comparison between attenuation-corrected and uncorrected images. Eur J Nucl Med 24:1091–1098

    CAS  PubMed  Google Scholar 

  • Beyer T, Antoch G, Muller S, Egelhof T, Freudenberg LS, Debatin J, Bockisch A (2004) Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 45[Suppl 1]:25S–35S

    PubMed  Google Scholar 

  • Beyer T, Kinahan P, Townsend D (1997) Optimization of transmission and emission scan duration in 3D whole-body PET. Trans Nucl Sci 44:2400–2407

    Article  Google Scholar 

  • Beyer T, Kinahan PE, Townsend DW, and Sashin D (1994) The use of X-ray CT for attenuation correction of PET data. Presented at Nuclear Science Symposium and Medical Imaging Conference

    Google Scholar 

  • Bockisch A, Beyer T, Antoch G, Freudenberg LS, Kuhl H, Debatin JF, Muller SP (2004) Positron emission tomography/ computed tomography — imaging protocols, artifacts, and pitfalls. Mol Imaging Biol 6:188–199

    PubMed  Google Scholar 

  • Budinger T (1996) Single photon emission computed tomography. In: Sandler M, Patton J, Coleman R et al. (eds) Diognostic nuclear medicine, vol 1. Williams and Wilkins, Baltimore, pp 121–138

    Google Scholar 

  • Budinger T (1998) PET Instrumentation: what are the limits? Semin Nucl Med 28:247–267

    CAS  PubMed  Google Scholar 

  • Budinger T, Derenzo S, Greenberg W et al. (1978) Quantitative potentials of dynamic emission computed tomography. J Nucl Med 19:309–315

    CAS  PubMed  Google Scholar 

  • Butler J, Lingren C, Friesenhahn S et al. (1998) CdZnTe Solidstate gamma camera. IEEE Trans Nucl Sci 45:359–363

    CAS  Google Scholar 

  • Casey M, Nutt R (1986) Multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33:460–463

    Google Scholar 

  • Casey M, Eriksson L, Schmand M et al. (1997) Investigation of LSO crystals for high resolution positron emission tomography. IEEE Trans Nucl Sci 44:1109–1113

    Article  CAS  Google Scholar 

  • Celler A, Sitek A, Stoub E et al. (1998) Multiple line source array for SPECT transmission scans: simulation, phantom and patient studies. J Nucl Med 39:2183–2189

    CAS  PubMed  Google Scholar 

  • Chen E, MacIntyre W, Go R et al. (1997) Myocardial viability studies using fluorine-18-FDG SPECT: a comparison with fluorine-18-FDG PET. J Nucl Med 38:582–586

    CAS  PubMed  Google Scholar 

  • Cherry S, Dahlbom M, Hoffman E (1992) High sensitivity, total body PET scanning using 3D data acquisition and reconstruction. IEEE Trans Nucl Sci 39:1088–1092

    Article  CAS  Google Scholar 

  • Clack R, Townsend D, Jeavons A (1984) Increased sensitivity and field of view for a rotating positron camera. Phys Med Biol 29:1421–1431

    Article  CAS  PubMed  Google Scholar 

  • Coleman R (1997) Camera-based PET: the best is yet to come. J Nucl Med 38:1796–1797

    CAS  PubMed  Google Scholar 

  • Dahlbom M, Cutler P, Digby W et al. (1994) Characterization of sampling schemes for whole body PET imaging. IEEE Trans Nucl Sci 41:1571–1576

    Article  Google Scholar 

  • Dahlbom M, Hoffman E, Hoh C et al. (1992) Whole-body positron emission tomography: part I. Methods and performance characteristics. J Nucl Med 33:1191–1199

    CAS  PubMed  Google Scholar 

  • Dahlbom M, MacDonald L, Eriksson L et al. (1997) Performance of a YSO/LSO detector block for use in a PET/SPECT system. IEEE Trans Nucl Sci 44:1114–1119

    Article  CAS  Google Scholar 

  • deKemp RA, Nahmias C (1994) Attenuation correction in PET using single photon transmission measurement. Med Phys 21:771–778

    CAS  PubMed  Google Scholar 

  • Ferreira N, Trebossen R, Bendriem B (1998) Assessment of 3-D PET quantitation: influence of out of the field of view radioactive sources and of attenuating media. IEEE Trans Nucl Sci 45:1670–1675

    Article  CAS  Google Scholar 

  • Ficaro EP, Fessler JA, Rogers WL et al. (1994) Comparison of americium-241 and technetium-99 m as transmission sources for attenuation correction of thallium-201 SPECT imaging of the heart. J Nucl Med 35:652–663

    CAS  PubMed  Google Scholar 

  • Freifelder R, Karp J (1997) Dedicated PET scanners for breast imaging. Phys Med Biol 42:2463–2480

    Article  CAS  PubMed  Google Scholar 

  • Germano G, Kavanagh P, Kiat H et al. (1994) Temporal image fractionation: rejection of motion artifacts in myocardial SPECT. J Nucl Med 35:1193–1197

    CAS  PubMed  Google Scholar 

  • Goerres GW, Burger C, Schwitter MR, Heidelberg TN, Seifert B, von Schulthess GK (2003) PET/CT of the abdomen: optimizing the patient breathing pattern. Eur Radiol 13:734–739

    Article  PubMed  Google Scholar 

  • Goerres GW, Hany TF, Kamel E, von Schulthess GK, Buck A (2002) Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants. Eur J Nucl Med Mol Imaging 29:367–370

    CAS  PubMed  Google Scholar 

  • Gruber G, Moses W, Derenzo S et al. (1998) A discrete scintillation camera module using silicon photodiode readout of CsI(Tl) crystals for breast cancer imaging. IEEE Nucl Instr Methods 45:1063–1068

    CAS  Google Scholar 

  • Guerrero T, Hoffman E, Dahlbom M et al. (1990) Characterization of a whole body imaging technique for PET. IEEE Trans Nucl Sci 37:676–679

    Article  Google Scholar 

  • Halpern BS, Dahlbom M, Waldherr C, Yap CS, Schiepers C, Silverman DH, Ratib O, Czernin J (2004) Cardiac pacemakers and central venous lines can induce focal artifacts on CT corrected PET images. J Nucl Med 45:290–293

    PubMed  Google Scholar 

  • Hasegawa BH, Wong KH, Iwata K, Barber WC, Hwang AB, Sakdinawat AE, Ramaswamy M, Price DC, Hawkins RA (2002) Dual-modality imaging of cancer with SPECT/CT. Technol Cancer Res Treat 1:449–458

    PubMed  Google Scholar 

  • Hoffman E, Huang S, Plummer D et al. (1982) Quantitation in positron emission computed tomography: effect of nonuniform resolution. J Comput Assist Tomogr 6:987–999

    CAS  PubMed  Google Scholar 

  • Huber J, Moses W, Derenzo S et al. (1997) Characterization of a 64 channel PET detector using photodiodes for crystal identification. IEEE Trans Nucl Sci 44:1197–1201

    Article  CAS  Google Scholar 

  • Huesman R (1977) The effects of a finite number of projection angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstruction. Phys Med Biol 22:511–521

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Kubota K, Yamada S et al. (1998) Lesion-to-background ratio in nonattenuation-corrected whole-body FDG PET images. J Nucl Med 39:1219–1223

    CAS  PubMed  Google Scholar 

  • Kalki K, Blankespoor SC, Brown JK, Hasegawa BH, Dae MW, Chin M, Stillson C (1997) Myocardial perfusion imaging with a combined x-ray CT and SPECT system. J Nucl Med 38:1535–1540

    CAS  PubMed  Google Scholar 

  • Karp J, Muehllehner G, Mankoff D et al. (1990) Continuousslice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 31:617–627

    CAS  PubMed  Google Scholar 

  • Karp JS, Muehllehner G, Qu H et al. (1995) Singles transmission in volume-imaging PET with a 137 Cs source. Phys Med Biol 40:929–944

    Article  CAS  PubMed  Google Scholar 

  • Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33:166–179

    Article  PubMed  Google Scholar 

  • Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25:2046–2053

    Article  CAS  PubMed  Google Scholar 

  • Kipper M, Yeung D, Halpern S et al. (1998) Quality of planar images using a solid-state (CdZnTe) gamma camera, compared with conventional gamma scintillation cameras. J Nucl Med 39:sP132

    Google Scholar 

  • Kojima A, Matsumoto M, Takahashi M et al. (1993) Effect of energy resolution on scatter fraction in scintigraphic imaging: Monte Carlo study. Med Phys 20:1107–1113

    CAS  PubMed  Google Scholar 

  • Lecomte R, Cadorette J, Rodrigue S et al. (1996) Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci 43:1952–1957

    Article  Google Scholar 

  • Levin C, Hoffman E, Tornai M et al. (1997) PSPMT and photodiode designs of a small scintillation camera for imaging malignant breast tumors. IEEE Trans Nucl Sci 44:1513–1520

    CAS  Google Scholar 

  • Macfarlane D, Cotton L, Ackermann R et al. (1995) Triplehead SPECT with 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG): initial evaluation in oncology and comparison with FDG PET. Radiology 194:425–429

    CAS  PubMed  Google Scholar 

  • Mankoff D, Muehllehner G, Miles G (1990) A local coincidence triggering system for PET tomographs composed of large-area positron-sensitive detectors. IEEE Trans Nucl Sci 37:730–736

    Article  Google Scholar 

  • Melcher CL, Schweitzer JS (1992) A promising new scintillator: cerium-doped lutetium oxyorthosilicate. Nucl Instr Methods 314:212–214

    Google Scholar 

  • Muehllehner G (1979) Effect of crystal thickness on scintillation camera performance. J Nucl Med 20:992–993

    CAS  PubMed  Google Scholar 

  • Muehllehner G (1985) Effect of resolution improvement on required count density in ECT imaging: a computer simulation. Phys Med Biol 30:163–173

    Article  CAS  PubMed  Google Scholar 

  • Muehllehner G, Karp J (1986) A positron camera using position-sensitive detectors: PENN-PET. J Nucl Med 27:90–98

    CAS  PubMed  Google Scholar 

  • Muehllehner G, Colsher J, Stoub E (1980) Correction for field nonuniformity in scintillation cameras through removal of spatial distortion. J Nucl Med 21:771–776

    CAS  PubMed  Google Scholar 

  • Mueller S, Foley Kijewski M, Moore S et al. (1990) Maximumlikelihood estimation: a mathematical model for quantitation in nuclear medicine. J Nucl Med 31:1693–1701

    Google Scholar 

  • Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Squire OD, Braban LE, Ford E, Sidhu K, Mageras GS, Larson SM, Humm JL (2002) Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 29:366–371

    Article  CAS  PubMed  Google Scholar 

  • NEMA (1986) Performance measurements of scintillation cameras, National Electrical Manufacturers Association

    Google Scholar 

  • NEMA (1994) Performance measurements of positron emission tomographs, National Electrical Manufacturers Association

    Google Scholar 

  • O’Connor M (1996) Instrument-and computer-related problems and artifacts in nuclear medicine. Semin Nucl Med 26:256–277

    CAS  PubMed  Google Scholar 

  • Patt B, Iwanczyk J, Tull C et al. (1998) High resolution CsI(Tl)/ Si-PIN detector development for breast imaging. IEEE Trans Nucl Sci 45:2126–2131

    Article  Google Scholar 

  • Robar J, Thompson C, Murthy K et al. (1997) Construction and calibration of detectors for high-resolution metabolic breast cancer imaging. Nucl Instr Methods A 392:402–406

    CAS  Google Scholar 

  • Schmand M, Dahlbohm M, Eriksson L et al. (1998a) Performance of a LSO/NaI(Tl) phoswich detector for a combined PET/SPECT imaging system. J Nucl Med 39:9P

    Google Scholar 

  • Schmand M, Eriksson L, Casey M et al. (1998b) Detector design of a LSO based positron emission tomograph with depth of interaction capability for high resolution brain imaging. J Nucl Med 39:133P

    Google Scholar 

  • Schmelz C, Bradbury SM, Holl I et al. (1995) Feasibility study of an avalanche photodiode readout for high resolution PET with nsec time resolution. IEEE Trans Nucl Sci 42:1080–1084

    Article  Google Scholar 

  • Shreve P, Steventon R, Deters E et al. (1998) Oncologic diagnosis with 2-[fluorine-18]fluoro-2-deoxy-D-glucose imaging: dual head coincidence gamma camera versus positron emission tomographic scanner. Radiology 207:431–437

    CAS  PubMed  Google Scholar 

  • Smith R, Karp J, Muehllehner G et al. (1997) Singles transmission scans performed post-injection for quantitative whole body PET imaging. IEEE Trans Nucl Sci 44:1329–1335

    CAS  Google Scholar 

  • Sossi V, Barney J, Harrison R (1995) Effect of scatter from radioactivity outside of the field of view in 3-D PET. IEEE Trans Nucl Sci 42:1157–1161

    Article  Google Scholar 

  • Spinks T, Jones T, Heather J et al. (1989) Quality control procedures in positron tomography. Eur J Nucl Med 15:736–740

    CAS  PubMed  Google Scholar 

  • Tan P, Bailey DL, Meikle SR et al. (1993) A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med 34:1752–1760

    CAS  PubMed  Google Scholar 

  • Thompson C, Murthy K, Picard Y et al. (1995) Positron emission mammography (PEM): a promising technique for detecting breast cancer. IEEE Trans Nucl Sci 42:1012–1017

    Article  Google Scholar 

  • Townsend DW, Beyer T, Kinahan PE, Brun T, Roddy R, Nutt R, and Byars LG (1998) The SMART scanner: a combined PET/CT tomograph for clinical oncology.

    Google Scholar 

  • Townsend DW, Carney JP, Yap JT, Hall NC (2004) PET/CT today and tomorrow. J Nucl Med 45[Suppl 1]:4S–14S

    PubMed  Google Scholar 

  • Townsend D, Wensveen M, Byars L et al. (1993) A rotating PET scanner using BGO block detectors: Design, performance and applications. J Nucl Med 34:1367–1376

    CAS  PubMed  Google Scholar 

  • Tung CH, Gullberg GT, Zeng GL et al. (1992) Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci 39:1134–1143

    Article  CAS  Google Scholar 

  • van Lingen A, Huijgens PC, Visser FC et al. (1992) Performance characteristics of a 511-keV collimator for imaging positron emitters with a standard gamma-camera. Eur J Nucl Med 19(5):315–321

    Article  PubMed  Google Scholar 

  • Weinberg I, Malewski S, Weisenberger A et al. (1996) Preliminary results for positron emission mammography: realtime functional breast imaging in a cenventional mammography gantry. Eur J Nucl Med 23:804–806

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Nahmias C (1995) Single-photon transmission measurements in positron emission tomography using 137Cs. Phys Med Biol 40:1255–1266

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ziegler, S.I., Dahlbom, M. (2006). Instrumentation and Data Acquisition. In: Baert, A.L., Sartor, K., Schiepers, C. (eds) Diagnostic Nuclear Medicine. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30005-8_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-30005-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42309-6

  • Online ISBN: 978-3-540-30005-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics