Skip to main content

Definition of Target Volume and Organs at Risk. Biological Target Volume

  • Chapter
New Technologies in Radiation Oncology

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

13.5 Conclusion

Target volume definition is an interactive process. Based on radiological (and biological) imaging, the radiation oncologist has to outline the GTV, CTV, ITV, and PTV and BTV. In this process, a lot of medical and technological aspects have to be considered. The criteria for GTV, CTV, etc. definition are often not exactly standardised, and this leads, in many cases to variability between clinicians; however, exactly defined imaging criteria, imaging with high sensitivity and specificity for tumour tissue and special training could lead to a higher consensus in target volume delineation and, consequently, to lower differences between clinicians. It must be emphasised, however, that further verification studies and cost-benefit analyses are needed before biological target definition can become a stably integrated part of target volume definition.

The ICRU report 50 from 1993 and the ICRU report 62 from 1999 defining the anatomically based terms CTV, GTV and PTV must still be considered as the gold standard in radiation treatment planning; however, further advances in technology concerning signal resolution and development of new tracers with higher sensitivity and specificity will induce a shift of paradigms away from the anatomically based target volume definition towards biologically based treatment strategies. New concept and treatment strategies should be defined based on these new investigation methods, and the standards in radiation treatment planning — in a continuous, evolutionary process — will have to integrate new imaging methods in an attempt to finally achieve the ultimate goal of cancer cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belhocine T, Steinmetz N, Li C et al. (2004) The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat 3:23–32

    PubMed  CAS  Google Scholar 

  • Bradley J, Thorstad WL, Mutic S et al. (2004) Impact of FDG-PET on radiation therapy volume delineation in NSCLC. Int J Radiat Oncol Biol Phys 59:78–86

    Article  PubMed  Google Scholar 

  • Chao KS, Bosch WR, Mutic S et al. (2001) A novel approach to overcome hypoxic tumour resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49:1171–1182

    PubMed  CAS  Google Scholar 

  • Chapman JD, Bradley JD, Eary JF et al. (2003) Molecular (functional) imaging for radiotherapy applications: an RTOG symposium. Int J Radiat Oncol Biol Phys 55:294–301

    Article  PubMed  CAS  Google Scholar 

  • Choi NC, Fischman AJ, Niemierko A et al. (2002) Doseresponse relationship between probability of pathologic tumour control and glucose metabolic rate measured with FDG PET after preoperative chemoradiotherapy in locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 54:1024–1035

    PubMed  Google Scholar 

  • Ciernik IF, Dizendorf E, Baumert BG et al. (2003) Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 57:853–863

    Article  PubMed  Google Scholar 

  • Coakley FV, Kurhanewicz J, Lu Y et al. (2002) Prostate cancer tumour volume: measurement with endorectal MR and MR spectroscopic imaging. Radiology 223:91–97

    PubMed  Google Scholar 

  • Dehdashti F, Grigsby PW, Mintun MA et al. (2003) Assessing tumour hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response: a preliminary report. Int J Radiat Oncol Biol Phys 55:1233–1238

    Article  PubMed  Google Scholar 

  • Erdi YE, Rosenzweig K, Erdi AK et al. (2002) Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 62:51–60

    Article  PubMed  Google Scholar 

  • Flamen P, Van Cutsem E, Lerut A et al. (2002) Positron emission tomography for assessment of the response to induction radiochemotherapy in locally advanced oesophageal cancer. Ann Oncol 13:361–368

    Article  PubMed  CAS  Google Scholar 

  • Giraud P, Grahek D, Montravers F et al. (2001) CT and (18)Fdeoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 49:1249–1257

    Article  PubMed  CAS  Google Scholar 

  • Graves EE, Nelson SJ, Vigneron DB et al. (2000) A preliminary study of the prognostic value of proton magnetic resonance spectroscopic imaging in gamma knife radiosurgery of recurrent malignant gliomas. Neurosurgery 46:319–326

    PubMed  CAS  Google Scholar 

  • Grigsby PW, Siegel BA, Dehdashti F et al. (2003) Posttherapy surveillance monitoring of cervical cancer by FDG-PET. Int J Radiat Oncol Biol Phys 55:907–913

    Article  PubMed  Google Scholar 

  • Gross MW, Weber WA, Feldmann HJ et al. (1998) The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys 41:989–995

    Article  PubMed  CAS  Google Scholar 

  • Grosu AL, Weber WA, Feldmann HJ et al. (2000) First experience with I-123-Alpha-Methyl-Tyrosine SPECT in the 3-D radiation treatment planning of brain gliomas. Int J Radiat Oncol Biol Phys 47:517–527

    Article  PubMed  CAS  Google Scholar 

  • Grosu AL, Feldmann HJ, Dick S et al. (2002) Implications of IMT-SPECT for postoperative radiation treatment planning in patients with gliomas. Int J Radiat Oncol Biol Phys 54:842–854

    PubMed  Google Scholar 

  • Grosu AL, Lachner R, Wiedenmann N et al. (2003) Validation of a method for automatic fusion of CT-and Cll-methionine-PET datasets of the brain for stereotactic radiotherapy using a LINAC. First clinical experience. Int J Radiat Oncol Biol Phys 56:1450–1463

    Article  PubMed  Google Scholar 

  • Grosu AL, Weber AW, Riedel E et al. (2005a) L-(Methyl-11C) methionine positron emission tomography for target delineation in resected high grade gliomas before radiation therapy. Int J Radiat Oncol Biol Phys 63:64–74

    PubMed  CAS  Google Scholar 

  • Grosu AL, Weber WA, Franz M et al. (2005b) Re-irradiation of recurrent high grade gliomas using amino-acids-PET(SPECT)/CT/MRI image fusion to determine gross tumour volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys (in press)

    Google Scholar 

  • Grosu AL, Piert M, Weber WA et al. (2005c) Positron emission tomography in target volume definition for radiation treatment planning. Strahlenther Onkol 181:483–499

    Article  PubMed  Google Scholar 

  • Haubner R, Wester HJ, Weber WA et al. (2001) Noninvasive imaging of alpha(v)beta3 integrin expression using 18Flabeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785

    PubMed  CAS  Google Scholar 

  • Hebert ME, Lowe VJ, Hoffman JM et al. (1996) Positron emission tomography in the pretreatment evaluation and follow-up of non-small cell lung cancer patients treated with radiotherapy: preliminary findings. Am J Clin Oncol 19:416–421

    Article  PubMed  CAS  Google Scholar 

  • ICRU 50 (1993) Prescribing, recording and reporting photon beam therapy. ICRU report no. 50. ICRU, Bethesda, Maryland

    Google Scholar 

  • ICRU 62 (1999) Prescribing, recording and reporting photon beam therapy. ICRU report no. 62 (supplement to ICRU report no. 50). ICRU, Bethesda, Maryland

    Google Scholar 

  • Jackson A, Kutcher GJ (1993) Probability of radiation-induced complications for normal tissue with parallel architecture subject to non-uniform irradiation. Med Phys 20:621–625

    Google Scholar 

  • Julow J, Major T, Emri M et al. (2000) The application of image fusion in stereotactic brachytherapy of brain tumours. Acta Neurochir (Wien) 142:1253–1258

    Article  CAS  Google Scholar 

  • Källmann P, Ägren A, Brahme A (1992) Tumour and normal tissue responses to fractionated nonuniform dose delivery. Int J Radiat Oncol Biol Phys 62:249–262

    Google Scholar 

  • Kiffer JD, Berlangieri SU, Scott AM et al. (1998) The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 19:167–177

    Article  PubMed  CAS  Google Scholar 

  • Ling CC, Humm J, Larson S et al. (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551–560

    Article  PubMed  CAS  Google Scholar 

  • MacManus MP, Hicks RJ, Ball DL et al. (2001) F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer 92:886–895

    CAS  Google Scholar 

  • MacManus MP, Hicks RJ, Matthews JP et al. (2003) Positron emission tomography is superior to computed tomography scanning for response assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 21:1285–1292

    Google Scholar 

  • Mah K, Caldwell CB, Ung YC et al. (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined nonsmall-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52:339–350

    Article  PubMed  Google Scholar 

  • Mizowaki T, Cohen GN, Fung AY et al. (2002) Towards integrating functional imaging in the treatment of prostate cancer with radiation: the registration of the MR spectroscopy imaging to ultrasound/CT images and its implementation in treatment planning. Int J Radiat Oncol Biol Phys 54:1558–1564

    PubMed  Google Scholar 

  • Molls M (2001) Tumor oxygenation and treatment outcome. In: Bokemeyer C, Ludwig H (eds) ESO scientific updates, vol 6: Anemia in cancer. Elsevier, Amsterdam, pp 175–187

    Google Scholar 

  • Molls M, Vaupel P (2000) The impact of the tumor environment on experimental and clinical radiation oncology and other therapeutic modalities. In: Molls M, Vaupel P (eds) Blood perfusion and microenvironment of human tumors: implications for clinical radiooncology. Springer, Berlin Heidelberg New York, pp 1–3

    Google Scholar 

  • Mueller-Lisse UG, Vigneron DB, Hricak H et al. (2001) Localized prostate cancer: effect of hormone deprivation therapy measured by using combined three-dimensional 1H MR spectroscopy and MR imaging: clinicopathologic case-controlled study. Radiology 221:380–390

    PubMed  CAS  Google Scholar 

  • Munley MT, Marks LB, Scarfone C et al. (1999) Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 23:105–114

    Article  PubMed  CAS  Google Scholar 

  • Nestle U et al. (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44(3):593–7.

    Article  PubMed  CAS  Google Scholar 

  • Nishioka T, Shiga T, Shirato H et al. (2002) Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 53:1051–1057

    Article  PubMed  Google Scholar 

  • Nuutinen J, Sonninen P, Lehikoinen P et al. (2000) Radiotherapy treatment planning and long-term follow-up with [(11)C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48:43–52

    Article  PubMed  CAS  Google Scholar 

  • Pirzkall A, McKnight TR, Graves EE et al. (2001) MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys 50:915–928

    Article  PubMed  CAS  Google Scholar 

  • Pirzkall A, Li X, Oh J et al. (2004) 3D MRSI for resected highgrade gliomas before RT: tumour extent according to metabolic activity in relation to MRI. Int J Radiat Oncol Biol Phys 59:126–137

    Article  PubMed  Google Scholar 

  • Rahn AN, Baum RP, Adamietz IA et al. (1998) Value of 18F fluorodeoxyglucose positron emission tomography in radiotherapy planning of head-neck tumours. Strahlenther Onkol 174:358–364 [in German]

    Article  PubMed  CAS  Google Scholar 

  • Rischin D, Peters L, Hicks R et al. (2001) Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J Clin Oncol 19:535–542

    PubMed  CAS  Google Scholar 

  • Vanuytsel LJ, Vansteenkiste JF, Stroobants SG et al. (2000) The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol

    Google Scholar 

  • Voges J, Herholz K, Holzer T et al. (1997) 11C-methionine and 18F-2-fluorodeoxyglucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125-I seeds. Stereotact Funct Neurosurg 69:129–135

    PubMed  CAS  Google Scholar 

  • Wagner M, Seitz U, Buck A et al. (2003) 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Res 63:2681–2687

    PubMed  CAS  Google Scholar 

  • Weber WA, Petersen V, Schmidt B et al. (2003) Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 21:2651–2657

    PubMed  CAS  Google Scholar 

  • Wefer AE, Hricak H, Vigneron DB et al. (2000) Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol 164:400–404

    Article  PubMed  CAS  Google Scholar 

  • Zaider M, Zelefsky MJ, Lee EK et al. (2000) Treatment planning for prostate implants using magnetic-resonance spectroscopy imaging. Int J Radiat Oncol Biol Phys 47:1085–1096

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grosu, AL., Sprague, L.D., Molls, M. (2006). Definition of Target Volume and Organs at Risk. Biological Target Volume. In: Schlegel, W., Bortfeld, T., Grosu, AL. (eds) New Technologies in Radiation Oncology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29999-8_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-29999-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00321-2

  • Online ISBN: 978-3-540-29999-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics