Skip to main content

Scanning Probe Studies of Nanoscale Adhesion Between Solids in the Presence of Liquids and Monolayer Films

  • Reference work entry
  • 1952 Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

Adhesion between solids is a ubiquitous phenomenon whose importance is magnified at the micrometer and nanometer scales, where the surface-to-volume ratio diverges as we approach the single atom.

Numerous techniques for measuring adhesion at the atomic scale have been developed. Yet significant limitations exist. Instrumental improvements and reliable quantification are still needed.

Recent studies have highlighted the unique and important effect of liquid capillaries, particularly water, at the nanometer scale. The results demonstrate that macroscopic considerations of classic meniscus theory must be, at the very least, corrected to take into account new scaling and geometric relationships unique to the nanometer scale. More generally, a molecular-scale description of wetting and capillary condensation as it applies to nanometer-scale interfaces is clearly desirable, but remains an important challenge.

The measurement of adhesion between self-assembled monolayers has proven to be a reliable means for probing the influence of surface chemistry and local environment on adhesion. To date, however, few systems have been investigated quantitatively in detail. The molecular origins of adhesion down to the single bond level remain to be fully investigated. The most recent studies illustrate that although new information about adhesion in these systems has been revealed, further enhancements of current techniques, as well as the development of new methodologies, coupled with accurate theoretical modeling, are required to adequately tackle these complex measurements.

This is a preview of subscription content, log in via an institution.

Abbreviations

AFM:

atomic force microscope/microscopy

IFM:

interfacial force microscope

JKR:

Johnson–Kendall–Roberts

MEMS:

microelectromechanical systems

NEMS:

nanoelectromechanical systems

OTE:

octadecyltrimethoxysilane

OTS:

octadecyltrichlorosilane

RH:

relative humidity

SAM:

self-assembling monolayer

SFA:

surface forces apparatus

SFM:

scanning force microscopy

STM:

scanning tunneling microscope/microscopy

UHV:

ultrahigh vacuum

References

  1. I. L. Singer, H. M. Pollock (Eds.): Fundamentals of Friction (Kluwer, Dordrecht 1992) p. 351

    Google Scholar 

  2. K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch et al.: Adhesive force of a single gecko foot-hair, Nature 405 (2000) 681–685

    Article  CAS  Google Scholar 

  3. A. L. Baldwin, G. Thurston: Mechanics of endothelial cell architecture and vascular permeability, Critical Rev. Biomed. Eng. 29 (2001) 247–278

    CAS  Google Scholar 

  4. S. R. White, N. R. Sottos, P. H. Guebelle, J. S. Moore et al.: Autonomic healing of polymer composites, Nature 409 (2001) 794–797

    Article  CAS  Google Scholar 

  5. R. W. Carpick, M. Salmeron: Scratching the surface: Fundamental investigations of tribology with atomic force microscopy, Chem. Rev. 97 (1997) 1163–1194

    Article  CAS  Google Scholar 

  6. R. Maboudian: Adhesion and friction issues associated with reliable operation of MEMS, MRS Bull. 23 (1998) 47–51

    CAS  Google Scholar 

  7. R. Maboudian, W. R. Ashurst, C. Caffaro: Tribological challenges in micromechanical systems, Tribol. Lett. 12 (2002) 95–100

    Article  Google Scholar 

  8. R. Maboudian, R. T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. 15 (1997) 1

    Article  CAS  Google Scholar 

  9. J. N. Israelachvili: Thin film studies using multiple-beam interferometry, J. Colloid Interface Sci. 44 (1973) 259–272

    Article  CAS  Google Scholar 

  10. J. N. Israelachvili, D. Tabor: The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm, Proc. R. Soc. London A 331 (1972) 19–38

    Article  CAS  Google Scholar 

  11. G. Binnig, C. F. Quate, C. Gerber: Invention of AFM, Phys. Rev. Lett. 56 (1986) 930

    Article  Google Scholar 

  12. P. Frantz, N. Agraït, M. Salmeron: SFA w/ capacitance, Langmuir 12 (1996) 3289–3294

    Article  CAS  Google Scholar 

  13. J. N. Israelachvili, P. M. McGuiggan, A. M. Homola: Dynamic properties of molecularly thin liquid films, Science 240 (1988) 189–191

    Article  CAS  Google Scholar 

  14. J. Peachey, J. Van Alsten, S. Granick: Design of an apparatus to measure the shear response of ultrathin liquid, Rev. Sci. Instrum. 62 (1991) 463–473

    Article  CAS  Google Scholar 

  15. L. R. Fisher, J. N. Israelachvili: Direct measurement of the effect of meniscus forces on adhesion: A study of the applicability of macroscopic thermodynamics to microscopic liquid interfaces, Colloids Surf. 3 (1981) 303–319

    Article  CAS  Google Scholar 

  16. L. R. Fisher, J. N. Israelachvili: Experimental studies on the applicability of the Kelvin equation to highly curved concave menisci, J. Colloid Interface Sci. 80 (1981) 528–541

    Article  CAS  Google Scholar 

  17. J. N. Israelachvili: Intermolecular and Surface Forces (Academic Press, London 1992)

    Google Scholar 

  18. S. Granick: Molecular tribology of fluids. In: Fundamentals of Friction, ed. by I. L. Singer, H. M. Pollock (Kluwer, Dordrecht 1992) p. 387

    Google Scholar 

  19. G. Reiter, A. L. Demirel, J. Peanasky, L. L. Cai et al.: Stick to slip transition and adhesion of lubricated surfaces in moving contact, J. Chem. Phys. 101 (1994) 2606

    Article  CAS  Google Scholar 

  20. K. L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge 1987)

    Google Scholar 

  21. O. Marti, B. Drake, P. K. Hansma: Atomic force microscopy of liquid-covered surfaces: Atomic resolution images, Appl. Phys. Lett. 51 (1987) 484–486

    Article  CAS  Google Scholar 

  22. G. J. Germann, S. R. Cohen, G. Neubauer, G. M. McClelland et al.: Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces, J. Appl. Phys. 73 (1993) 163

    Article  CAS  Google Scholar 

  23. L. Howald, E. Meyer, R. Lüthi, H. Haefke et al.: UHV AFM design, Appl. Phys. Lett. 63 (1993) 117

    Article  CAS  Google Scholar 

  24. M. Kageshima, H. Yamada, K. Nakayama, H. Sakama et al.: Development of an ultrahigh vacuum atomic force microscope for investigations of semiconductor surfaces, J. Vac. Sci. Technol. B 11 (1993) 1987–1991

    Article  CAS  Google Scholar 

  25. J. A. Greenwood: Adhesion of elastic spheres, Proc. R. Soc. London A 453 (1997) 1277–1297

    Article  CAS  Google Scholar 

  26. S. P. Jarvis, A. Oral, T. P. Weihs, J. B. Pethica: A novel force microscope and point contact probe, Rev. Sci. Instrum. 64 (1993) 3515

    Article  CAS  Google Scholar 

  27. S. P. Jarvis, H. Yamada, S.-I. Yamamoto, H. Tokumoto: A new force controlled atomic force microscope for use in ultrahigh vacuum, Rev. Sci. Instrum. 67 (1996) 2281

    Article  Google Scholar 

  28. S. A. Joyce, J. E. Houston: A new force sensor incorporating force-feedback control for interfacial force microscopy, Rev. Sci. Instrum. 62 (1991) 710–715

    Article  CAS  Google Scholar 

  29. S. A. Joyce, J. E. Houston, T. A. Michalske: Differentiation of topographical and chemical structures using an interfacial force microscope, Appl. Phys. Lett. 60 (1992) 1175

    Article  CAS  Google Scholar 

  30. P. D. Ashby, L. W. Chen, C. M. Lieber: Probing intermolecular forces and potentials with magnetic feedback chemical force microscopy, J. Am. Chem. Soc. 122 (2000) 9467–9472

    Article  CAS  Google Scholar 

  31. H. I. Kim, V. Boiadjiev, J. E. Houston, X.-Y. Zhu, J. D. Kiely: Tribological properties of self-assembled monolayers on Au, SiO x and Si surfaces, Tribol. Lett. 10(1-2) (2001) 97–101

    Article  CAS  Google Scholar 

  32. J. S. Nelson, B. W. Dodson, P. A. Taylor: Adhesive avalanche in covalently bonded materials, Phys. Rev. B 45 (1992) 4439–4444

    Article  Google Scholar 

  33. P. A. Taylor, J. S. Nelson, B. W. Dodson: Adhesion between atomically flat metallic surfaces, Phys. Rev. B 44 (1991) 5834–5841

    Article  CAS  Google Scholar 

  34. K. R. Shull: Contact mechanics and the adhesion of soft solids, Mater. Sci. Eng. R: Rep. R 36 (2002) 1–45

    Article  Google Scholar 

  35. L. Xu, A. Lio, J. Hu, D. F. Ogletree et al.: Wetting and capillary phenomena of water on mica, J. Phys. Chem. B 102 (1998) 540–548

    Article  CAS  Google Scholar 

  36. S. P. Timoshenko, J. N. Goodier: Theory of Elasticity (McGraw Hill, New York 1987)

    Google Scholar 

  37. J. P. Cleveland, S. Manne, D. Bocek, P. K. Hansma: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64 (1993) 403

    Article  CAS  Google Scholar 

  38. J. E. Sader: Parallel beam approximation for V-shaped atomic force microscope cantilevers, Rev. Sci. Instrum. 66 (1995) 4583

    Article  CAS  Google Scholar 

  39. M. Tortonese, M. Kirk: Characterization of application specific probes for SPMs, Proc. SPIE 3009 (1997) 53–60

    Article  CAS  Google Scholar 

  40. T. R. Albrecht, S. Akamine, T. E. Carver, C. F. Quate: Microfabrication of cantilever styli for the atomic force microscope, J. Vac. Sci. Technol. A 8 (1990) 3386–3396

    Article  CAS  Google Scholar 

  41. H.-J. Butt, P. Siedle, K. Seifert, K. Fendler et al.: Scan speed limit in atomic force microscopy, J. Microsc. 169 (1993) 75–84

    Article  Google Scholar 

  42. Y. Q. Li, N. J. Tao, J. Pan, A. A. Garcia et al.: Direct measurement of interaction forces between colloidal particles using the scanning force microscope, Langmuir 9 (1993) 637–641

    Article  CAS  Google Scholar 

  43. R. Lüthi, E. Meyer, H. Haefke, L. Howald et al.: Nanotribology: An UHV-SFM study on thin films of C60 and AgBr, Surf. Sci. 338 (1995) 247–260

    Article  Google Scholar 

  44. J. M. Neumeister, W. A. Ducker: Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers, Rev. Sci. Instrum. 65 (1994) 2527–2531

    Article  Google Scholar 

  45. D. F. Ogletree, R. W. Carpick, M. Salmeron: Calibration of frictional forces in atomic force microscopy, Rev. Sci. Instrum. 67 (1996) 3298–3306

    Article  CAS  Google Scholar 

  46. J. A. Ruan, B. Bhushan: Atomic-scale friction measurements using friction force microscopy: Part I – general principles and new measurement techniques, Trans. ASME J. Tribol. 116 (1994) 378

    Article  CAS  Google Scholar 

  47. J. E. Sader, I. Larson, P. Mulvaney, L. R. White: Method for the calibration of atomic force microscope cantilevers, Rev. Sci. Instrum. 66 (1995) 3789

    Article  CAS  Google Scholar 

  48. U. D. Schwarz, P. Koster, R. Wiesendanger: Quantitative analysis of lateral force microscopy experiments, Rev. Sci. Instrum. 67 (1996) 2560

    Article  CAS  Google Scholar 

  49. T. J. Senden, W. A. Ducker: Experimental determination of spring constants in atomic force microscopy, Langmuir 10 (1994) 1003

    Article  Google Scholar 

  50. A. Torii, M. Sasaki, K. Hane, S. Okuma: A method for determining the spring constant of cantilevers for atomic force microscopy, Meas. Sci. Technol. 7 (1996) 179–184

    Article  CAS  Google Scholar 

  51. J. E. Sader, J. W. M. Chon, P. Mulvaney: Calibration of rectangular atomic force microscope cantilevers, Rev. Sci. Instrum. 70 (1999) 3967–3969

    Article  CAS  Google Scholar 

  52. J. S. Villarrubia: Morphological estimation of tip geometry for scanned probe microscopy, Surf. Sci. 321 (1994) 287–300

    Article  CAS  Google Scholar 

  53. F. Atamny, A. Baiker: Direct imaging of the tip shape by AFM, Surf. Sci. 323 (1995) L314

    Article  CAS  Google Scholar 

  54. R. W. Carpick, N. Agraït, D. F. Ogletree, M. Salmeron: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope, J. Vac. Sci. Technol. B 14 (1996) 1289–1295

    Article  CAS  Google Scholar 

  55. R. Dixson, J. Schneir, T. McWaid, N. Sullivan et al.: Toward accurate linewidth metrology using atomic force microscopy and tip characterization, Proc. SPIE 2725 (1996) 589–607

    Article  Google Scholar 

  56. L. S. Dongmo, J. S. Villarrubia, S. N. Jones, T. B. Renegar et al.: Experimental test of blind tip reconstruction for scanning probe microscopy, Ultramicroscopy 85 (2000) 141–153

    Article  CAS  Google Scholar 

  57. K. F. Jarausch, T. J. Stark, P. E. Russell: Silicon structures for in situ characterization of atomic force microscope probe geometry, J. Vac. Sci. Technol. B 14 (1996) 3425–3430

    Article  CAS  Google Scholar 

  58. P. Markiewicz, M. C. Goh: Atomic force microscope tip deconvolution using calibration arrays, Rev. Sci. Instrum. 66 (1995) 3186–3190

    Article  CAS  Google Scholar 

  59. C. Odin, J. P. Aimé, Z. El Kaakour, T. Bouhacina: Tip's finite size effects on atomic force microscopy in the contact mode: Simple geometrical considerations for rapid estimation of apex radius and tip angle based on the study of polystyrene latex balls, Surf. Sci. 317 (1994) 321–340

    Article  CAS  Google Scholar 

  60. S. S. Sheiko, M. Moller, E. M. C. M. Reuvekamp, H. W. Zandbergen: Evaluation of the probing profile of scanning force microscopy tips, Ultramicroscopy 53 (1994) 371–380

    Article  CAS  Google Scholar 

  61. P. Siedle, H.-J. Butt, E. Bamberg, D. N. Wang et al.: Determining the form of atomic force microscope tips. In: X-Ray Optics and Microanalysis, ed. by P. B. Kenway, P. J. Duke, G. W. Lorimer et al. (Iop, Manchester 1992) pp. 361–364

    Google Scholar 

  62. J. S. Villarrubia: Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation, J. Res. Nat. Inst. Stand. Technol. 102 (1997) 425–454

    Google Scholar 

  63. K. L. Westra, D. J. Thomson: Atomic force microscope tip radius needed for accurate imaging of thin film surfaces, J. Vac. Sci. Technol. B 12 (1994) 3176–3181

    Article  CAS  Google Scholar 

  64. S. Xu, M. F. Arnsdorf: Calibration of the scanning (atomic) force microscope with gold particles, J. Microsc. 3 (1994) 199–210

    Article  Google Scholar 

  65. U. D. Schwarz, O. Zwörner, P. Köster, R. Wiesendanger: Friction force spectroscopy in the low-load regime with well-defined tips. In: Micro/Nanotribology and Its Applications, ed. by B. Bhushan (Kluwer, Dordrecht 1997)

    Google Scholar 

  66. P. Niedermann, W. Hanni, N. Blanc, R. Christoph et al.: Chemical vapor deposition diamond for tips in nanoprobe experiments, J. Vac. Sci. Technol. A 14 (1995) 1233–1236

    Article  Google Scholar 

  67. S. J. O'Shea, R. N. Atta, M. E. Welland: Characterization of tips for conducting atomic force microscopy, Rev. Sci. Instrum. 66 (1995) 2508–2512

    Article  Google Scholar 

  68. L. M. Qian, X. D. Xiao, S. Z. Wen: Tip in situ chemical modification and its effects on tribological measurements, Langmuir 16 (2000) 662–670

    Article  CAS  Google Scholar 

  69. E. L. Florin, V. T. Moy, H. E. Gaub: Adhesion forces between individual ligand-receptor pairs, Science 264 (1994) 415–417

    Article  CAS  Google Scholar 

  70. G. U. Lee, L. A. Chrisey, R. J. Colton: Direct measurement of the forces between complementary strands of DNA, Science 266 (1994) 771–773

    Article  CAS  Google Scholar 

  71. V. T. Moy, E. L. Florin, H. E. Gaub: Intermolecular forces and energies between ligands and receptors, Science 266 (1994) 257–259

    Article  CAS  Google Scholar 

  72. O. H. Willemsen, M. M. E. Snel, K. O. van der Werf, B. G. de Grooth et al.: Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy, Biophys. J. 75 (1998) 2220–2228

    Article  CAS  Google Scholar 

  73. S.-S. Wong, H. Takano, M. D. Porter: Mapping orientation differences of terminal functional groups by friction force microscopy, Anal. Chem. 70 (1998) 5209–5212

    Article  CAS  Google Scholar 

  74. H. J. Butt: Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope, Biophys. J. 60 (1991) 1438–1444

    Article  CAS  Google Scholar 

  75. W. A. Ducker, T. J. Senden, R. M. Pashley: Direct measurement of colloidal forces using an atomic force microscope, Nature 353 (1991) 239–241

    Article  CAS  Google Scholar 

  76. V. S. J. Craig, C. Neto: In situ calibration of colloid probe cantilevers in force microscopy: Hydrodynamic drag on a sphere approaching a wall, Langmuir 17 (2001) 6018–6022

    Article  CAS  Google Scholar 

  77. R. Staub, D. Alliata, C. Nicolini: Drift elimination in the calibration of scanning probe microscopes, Rev. Sci. Instrum. 66 (1995) 2513–2516

    Article  CAS  Google Scholar 

  78. J. Fu: In situ testing and calibrating of z-piezo of an atomic force microscope, Rev. Sci. Instrum. 66 (1995) 3785–3788

    Article  CAS  Google Scholar 

  79. J. Garnaes, L. Nielsen, K. Dirscherl, J. F. Jorgensen et al.: Two-dimensional nanometer-scale calibration based on one-dimensional gratings, Appl. Phys. A 66 (1998) 831–835

    Article  Google Scholar 

  80. S. M. Hues, C. F. Draper, K. P. Lee, R. J. Colton: Effect of PZT and PMN actuator hysteresis and creep on nanoindentation measurements using force microscopy, Rev. Sci. Instrum. 65 (1994) 1561

    Article  CAS  Google Scholar 

  81. J. F. Jorgensen, K. Carneiro, L. L. Madsen, K. Conradsen: Hysteresis correction of scanning tunneling microscope images, J. Vac. Sci. Technol. B 12 (1994) 1702–1704

    Article  Google Scholar 

  82. J. F. Jorgensen, L. L. Madsen, J. Garnaes, K. Carneiro et al.: Calibration, drift elimination, and molecular structure analysis, J. Vac. Sci. Technol. B 12 (1994) 1698–1701

    Article  Google Scholar 

  83. M. Jaschke, H. J. Butt: Height calibration of optical lever atomic force microscopes by simple laser interferometry, Rev. Sci. Instrum. 66 (1995) 1258

    Article  CAS  Google Scholar 

  84. L. A. Nagahara, K. Hashimoto, A. Fujishima, D. Snowden-Ifft et al.: Mica etch pits as a height calibration source for atomic force microscopy, J. Vac. Sci. Technol. B 12 (1993) 1694–1697

    Article  Google Scholar 

  85. H. M. Brodowsky, U.-C. Boehnke, F. Kremer: Wide range standard for scanning probe microscopy height calibration, Rev. Sci. Instrum. 67 (1996) 4198–4200

    Article  CAS  Google Scholar 

  86. T. Stifter, O. Marti, B. Bhushan: Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy, Phys. Rev. B 62 (2000) 13667–13673

    Article  CAS  Google Scholar 

  87. P. G. de Gennes: Wetting: Statistics and dynamics, Rev. Mod. Phys. 57 (1985) 827–863

    Article  Google Scholar 

  88. M. Binggeli, C. M. Mate: Influence of capillary condensation of water on nanotribology studied by force microscopy, Appl. Phys. Lett. 65 (1994) 415

    Article  CAS  Google Scholar 

  89. Y. Sugawara, M. Ohta, T. Konishi, S. Morita et al.: Effects of humidity and tip radius on the adhesive force measured with atomic force microscopy, Wear 168 (1993) 13–16

    Article  CAS  Google Scholar 

  90. F. M. Orr, L. E. Scriven, A. P. Rivas: Pendular rings between solids: Meniscus properties and capillary force, J. Fluid Mech. 67 (1975) 723–742

    Article  Google Scholar 

  91. X. Xiao, Q. Linmao: Investigation of humidity-dependent capillary force, Langmuir 16 (2000) 8153–8158

    Article  CAS  Google Scholar 

  92. E. Riedo, F. Levy, H. Brune: Kinetics of capillary condensation in nanoscopic sliding friction, Phys. Rev. Lett. 88 (2002) 185505/1–4

    Article  CAS  Google Scholar 

  93. D. Maugis, B. Gauthiermanuel: JKR-DMT transition in the presence of a liquid meniscus, J. Adhes. Sci. Technol. 8 (1994) 1311–1322

    Article  CAS  Google Scholar 

  94. A. Fogden, L. R. White: Contact elasticity in the presence of capillary condensation. 1. The nonadhesive Hertz problem, J. Colloid Interface Sci. 138 (1990) 414

    Article  CAS  Google Scholar 

  95. K. L. Johnson, K. Kendall, A. D. Roberts: Surface energy and the contact of elastic solids, Proc. R. Soc. London A 324 (1971) 301–313

    Article  CAS  Google Scholar 

  96. K. Johnson, J. Greenwood: An adhesion map for the contact of elastic spheres, J. Colloid Interface Sci. 192 (1997) 326–333

    Article  CAS  Google Scholar 

  97. K. L. Johnson: Adhesion and friction between a smooth elastic asperity and a plane surface, Proc. R. Soc. London A 453 (1997) 163

    Article  CAS  Google Scholar 

  98. T. Thundat, X. Y. Zheng, G. Y. Chen, R. J. Warmack: Role of relative humidity in atomic force microscopy imaging, Surf. Sci. 294 (1993) 939–943

    Article  Google Scholar 

  99. M. Binggeli, R. Christoph, H.-E. Hintermann: Observation of controlled, electrochemically induced friction force modulations in the nano-Newton range, Tribol. Lett. 1 (1995) 13

    Article  CAS  Google Scholar 

  100. B. Bhushan, S. Sundararajan: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy, Acta Mater. 46 (1998) 3793–3804

    Article  CAS  Google Scholar 

  101. W. Gulbinski, D. Pailharey, T. Suszko, Y. Mathey: Study of the influence of adsorbed water on AFM friction measurements on molybdenum trioxide thin films, Surf. Sci. 475 (2001) 149–158

    Article  CAS  Google Scholar 

  102. M. He, A. S. Blum, D. E. Aston, C. Buenviaje et al.: Critical phenomena of water bridges in nanoasperity contacts, J. Chem. Phys. 114 (2001) 1355–1360

    Article  CAS  Google Scholar 

  103. J. A. Greenwood, J. B. P. Williamson: Contact of nominally flat surfaces, Proc. R. Soc. London A 295 (1966) 300

    Article  CAS  Google Scholar 

  104. K. Komvopoulous: Surface engineering and microtribology for microelectromechanical systems, Wear 200 (1996) 305–327

    Article  Google Scholar 

  105. R. Maboudian, W. R. Ashurst, C. Carraro: Self-assembled monolayers as anti-stiction coatings for MEMS: Characteristics and recent developments, Sens. Actuators A 82 (2000) 219

    Article  Google Scholar 

  106. R. Maboudian: Surface processes in MEMS technology, Surf. Sci. Rep. 30 (1998) 207–270

    Article  CAS  Google Scholar 

  107. A. Noy, D. V. Vezenov, C. M. Lieber: Chemical force microscopy, Annu. Rev. Mater. Sci. 27 (1997) 381–421

    Article  CAS  Google Scholar 

  108. H. Takano, J. R. Kenseth, S.-S. Wong, J. C. O'Brien et al.: Chemical and biochemical analysis using scanning force microscopy, Chem. Rev. 99 (1999) 2845

    Article  CAS  Google Scholar 

  109. D. L. Sedin, K. L. Rowlen: Adhesion forces measured by atomic force microscopy in humid air, Anal. Chem. 72 (2000) 2183–2189

    Article  CAS  Google Scholar 

  110. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton et al.: Functional group imaging by chemical force microscopy, Science 265 (1994) 2071–2074

    Article  CAS  Google Scholar 

  111. H. I. Kim, J. E. Houston: Separating mechanical and chemical contributions to molecular-level friction, J. Am. Chem. Soc. 122 (2000) 12045–12046

    Article  CAS  Google Scholar 

  112. T. Nakagawa, K. Ogawa, T. Kurumizawa: Discriminating molecular length of chemically adsorbed molecules using an atomic force microscope having a tip covered with sensor molecules (an atomic force microscope having chemical sensing function), Jpn. J. Appl. Phys. 32 (1993) 294–296

    Article  Google Scholar 

  113. T. Nakagawa, K. Ogawa, T. Kurumizawa: Atomic force microscope for chemical sensing, J. Vac. Sci. Techol. B 12 (1994) 2215–2218

    Article  Google Scholar 

  114. A. Noy, C. D. Frisbie, L. F. Rozsnyai, M. S. Wrighton et al.: Chemical force microscopy: Exploiting chemically-modified tips to quantify adhesion, friction, and functional group distributions in molecular assemblies, J. Am. Chem. Soc. 117 (1995) 7943–7951

    Article  CAS  Google Scholar 

  115. S. K. Sinniah, A. B. Steel, C. J. Miller, J. E. Reutt-Robey: Solvent exclusion and chemical contrast in scanning force microscopy, J. Am. Chem. Soc. 118 (1996) 8925–8931

    Article  CAS  Google Scholar 

  116. E. W. v.d. Vegte, G. Hadziioannou: Acid-base properties and the chemical imaging of surface-bound functional groups with scanning force microscopy, J. Phys. Chem. B 101 (1997) 9563–9569

    Google Scholar 

  117. D. V. Vezenov, A. Noy, L. F. Rozsnyai, C. M. Lieber: Force titrations and ionization state sensitive imaging of functional group distributions in molecular assemblies, J. Am. Chem. Soc. 119 (1997) 2006–2015

    Article  Google Scholar 

  118. E. W. v.d. Vegte, G. Hadziioannou: Scanning force microscopy with chemical specificity: An extensive study of chemically specific tip-surface interactions and the chemical imaging of surface functional groups, Langmuir 13 (1997) 4357–4368

    Article  Google Scholar 

  119. L. A. Wenzler, G. L. Moyes, L. G. Olson, J. M. Harris et al.: Single-molecule bond rupture force analysis of interactions between AFM tips and substrates modified with organosilanes, Anal. Chem. 69 (1997) 2855–2861

    Article  CAS  Google Scholar 

  120. T. Ito, M. Namba, P. Buhlmann, Y. Umezawa: Modification of silicon nitride tips with trichlorosilane self-assembled monolayers (SAMs) for chemical force microscopy, Langmuir 13 (1997) 4323–4332

    Article  CAS  Google Scholar 

  121. L. A. Wenzler, G. L. Moyes, G. N. Raikar, R. L. Hansen et al.: Measurements of single-molecule bond rupture forces between self-assembled monolayers of organosilanes with the atomic force microscope, Langmuir 13 (1997) 3761–3768

    Article  CAS  Google Scholar 

  122. T. Han, J. M. Williams, T. P. Beebe: Chemical bonds studied with functionalized atomic force microscopy tips, Anal. Chim. Acta 307 (1995) 365–376

    Article  CAS  Google Scholar 

  123. V. Tsukruk, V. N. Bliznyuk: Adhesive and friction forces between chemically modified silicon and silicon nitride surfaces, Langmuir 14 (1998) 446–455

    Article  CAS  Google Scholar 

  124. D. V. Vezenov, A. V. Zhuk, G. M. Whitesides, C. M. Likeber: Chemical force spectroscopy in heterogeneous systems: Intermolecular interactions involving epoxy polymer, mixed monolayers, and polar solvents, J. Am. Chem. Soc. 124 (2002) 10578–10588

    Article  CAS  Google Scholar 

  125. J. E. Houston, H. I. Kim: Adhesion, friction, and mechanical properties of functionalized alkanethiol self-assembled monolayers, Accounts Chem. Res. 35 (2002) 547–553

    Article  CAS  Google Scholar 

  126. H. I. Kim, M. Graupe, O. Oloba, T. Koini et al.: Molecularly specific studies of the frictional properties of monolayer films: A systematic comparison of CF3-, (CH3)2(CH)-, and CH3- terminated films, Langmuir 15 (1999) 3179–3185

    Article  CAS  Google Scholar 

  127. S. Lee, Y. S. Shon, R. Colorado, R. L. Guenard et al.: The influence of packing densities and surface order on the frictional properties of alkanethiol self-assembled monolayers (SAMs) on gold: A comparison of SAMs derived from normal and spiroalkanedithiols, Langmuir 16 (2000) 2220–2224

    Article  CAS  Google Scholar 

  128. Y. Leng, S. Jiang: Dynamic simulations of adhesion and friction in chemical force microscopy, J. Am. Chem. Soc. 124 (2002) 11764–11770

    Article  CAS  Google Scholar 

  129. H. Skulason, C. D. Frisbie: Detection of discrete interactiuons upon rupture of Au microcontacts to self-assembled monolayers terminated with -S(CO)CH3 or -SH, J. Am. Chem. Soc. 122 (2000) 9750–9760

    Article  CAS  Google Scholar 

  130. J. Zhang, J. Kirkham, C. Robinson, M. L. Wallwork et al.: Determination of the ionization state of 11-thioundecyl-1-phosphonic acid in self-assembled monolayers by chemical force microscopy, Anal. Chem. 72 (2000) 1973–1978

    Article  CAS  Google Scholar 

  131. A. Lio, D. H. Charych, M. Salmeron: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica, J. Phys. Chem. B 101 (1997) 3800

    Google Scholar 

  132. A. Lio, C. Morant, D. F. Ogletree, M. Salmeron: Atomic force microscopy study of the pressure-dependent structural and frictional properties of n-alkanethiols on gold, J. Phys. Chem. B 101 (1997) 4767–4773

    Article  CAS  Google Scholar 

  133. G.-Y. Liu, M. Salmeron: Reversible displacement of chemisorbed n-alkane thiol molecules on Au(111) surface: An atomic force microscopy study, Langmuir 10 (1994) 367–370

    Article  CAS  Google Scholar 

  134. X. Xiao, J. Hu, D. H. Charych, M. Salmeron: Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy, Langmuir 12 (1996) 235

    Article  CAS  Google Scholar 

  135. A. B. Tutein, S. J. Stuart, J. A. Harrison: Indentation analysis of linear-chain hydrocarbon monolayers anchored to diamond, J. Phys. Chem. B 103 (1999) 11357

    Google Scholar 

  136. R. L. Pizzolatto, Y. J. Yang, L. K. Wolf, M. C. Messmer: Conformational aspects of model chromatographic surfaces studied by sum-frequency generation, Anal. Chim. Acta 397 (1999) 81

    Article  CAS  Google Scholar 

  137. E. W. v.d. Vegte, A. Subbotin, G. Hadziioannou: Nanotribological properties of unsymmetrical n-dialkyl sulfide monolayers on gold: Effect of chain length on adhesion, friction and imaging, Langmuir 16 (2000) 3249–3256

    Article  CAS  Google Scholar 

  138. Y.-S. Lo, N. D. Huefner, W. S. Chan, F. Stevebs et al.: Specific interactions between biotin and avidin studies by atomic force microscopy using the poisson statistical analysis method, Langmuir 15 (1999) 1373–1382

    Article  CAS  Google Scholar 

  139. Y.-S. Lo, J. Simons, T. P. Beebe, Jr.: Temperature dependence of the biotin–avidin bond rupture force studied by atomic force microscopy, J. Phys. Chem. B 106 (2002) 9847–9857

    Google Scholar 

  140. J. H. Hoh, J. P. Cleavland, C. B. Prater, J.-P. Revel et al.: Quantitized adhesion detected with the atomic force microscope, J. Am. Chem. Soc. 114 (1992) 4917–4918

    Article  CAS  Google Scholar 

  141. M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann et al.: How strong is a covalent bond?, Science 283 (1999) 1727–1730

    Article  CAS  Google Scholar 

  142. H. Skulason, C. D. Frisbie: Contact mechanics modeling of pull-off measurements: Effect of solvent, probe radius, and chemical binding probability on the detection of single-bond rupture forces by atomic force microscopy, Anal. Chem. 74 (2002) 3096–3104

    Article  CAS  Google Scholar 

  143. H. Schonherr, V. Chechik, C. J. M. Stirling, G. J. Vancso: Monitoring surface reactions at an AFM tip: An approach to following reaction kinetics in self-assembled monolayers on the nanometer scale, J. Am. Chem. Soc. 122 (2000) 3679–3687

    Article  CAS  Google Scholar 

  144. M. P. L. Werts, E. W. v.d. Vegte, G. Hadziioannou: Surface chemical reactions probed with scanning force microscopy, Langmuir 13 (1997) 4939–4942

    Article  CAS  Google Scholar 

  145. S. S. Wong, E. Joselevich, A. T. Woolley, C. Chin Li et al.: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature 394 (1998) 52–55

    Article  CAS  Google Scholar 

  146. S. S. Wong, A. T. Woolley, E. Joselevich, C. L. Cheung et al.: Covalently-functionalized single-walled carbon nanotube tips for chemical force microscopy, J. Am. Chem. Soc. 120 (1998) 8557–8558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the help of Ms. Erin Flater, who provided valuable assistance and insights into the literature on capillary formation. RWC acknowledges support of a career award from the National Science Foundation, grant #CMS-0134571.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Carpick, R.W., Batteas, J.D. (2004). Scanning Probe Studies of Nanoscale Adhesion Between Solids in the Presence of Liquids and Monolayer Films. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics