Skip to main content

Probes in Scanning Microscopies

  • Reference work entry
  • 1924 Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

Scanning probe microscopy (SPM) provides nanometer-scale mapping of numerous sample properties in essentially any environment. This unique combination of high resolution and broad applicability has lead to the application of SPM to many areas of science and technology, especially those interested in the structure and properties of materials at the nanometer scale. SPM images are generated through measurements of a tip-sample interaction. A well-characterized tip is the key element to data interpretation and is typically the limiting factor.

Commercially available atomic force microscopy (AFM) tips, integrated with force sensing cantilevers, are microfabricated from silicon and silicon nitride by lithographic and anisotropic etching techniques. The performance of these tips can be characterized by imaging nanometer-scale standards of known dimension, and the resolution is found to roughly correspond to the tip radius of curvature, the tip aspect ratio, and the sample height. Although silicon and silicon nitride tips have a somewhat large radius of curvature, low aspect ratio, and limited lifetime due to wear, the widespread use of AFM today is due in large part to the broad availability of these tips. In some special cases, small asperities on the tip can provide resolution much higher than the tip radius of curvature for low-Z samples such as crystal surfaces and ordered protein arrays.

Several strategies have been developed to improve AFM tip performance. Oxide sharpening improves tip sharpness and enhances tip asperities. For high-aspect-ratio samples such as integrated circuits, silicon AFM tips can be modified by focused ion beam (FIB) milling. FIB tips reach three-degree cone angles over lengths of several microns and can be fabricated at arbitrary angles. Other high resolution and high-aspect-ratio tips are produced by electron beam deposition (EBD) in which a carbon spike is deposited onto the tip apex from the background gases in an electron microscope. Finally, carbon nanotubes have been employed as AFM tips. Their nanometer-scale diameter, long length, high stiffness, and elastic buckling properties make carbon nanotubes possibly the ultimate tip material for AFM. Nanotubes can be manually attached to silicon or silicon nitride AFM tips or “grown” onto tips by chemical vapor deposition (CVD), which should soon make them widely available. In scanning tunneling microscopy (STM), the electron tunneling signal decays exponentially with tip-sample separation, so that in principle only the last few atoms contribute to the signal. STM tips are, therefore, not as sensitive to the nanoscale tip geometry and can be made by simple mechanical cutting or electrochemical etching of metal wires. In choosing tip materials, one prefers hard, stiff metals that will not oxidize or corrode in the imaging environment.

This is a preview of subscription content, log in via an institution.

Abbreviations

AFM:

atomic force microscope/microscopy

CVD:

chemical vapor deposition

EBD:

electron beam deposition

FIB:

focused ion beam

HF:

hydrofluoric acid

LPCVD:

low pressure chemical vapor deposition

NSOM:

near-field scanning optical microscope/microscopy

SEM:

scanning electron microscope/microscopy

SPM:

scanning probe microscopy

STM:

scanning tunneling microscope/microscopy

SWNT:

single-wall nanotubes

TEM:

transmission electron microscopy

UHV:

ultrahigh vacuum

References

  1. R. Linnemann, T. Gotszalk, I. W. Rangelow, P. Dumania, E. Oesterschulze: Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers, J. Vac. Sci. Technol. B 14(2) (1996) 856–860

    Article  CAS  Google Scholar 

  2. T. R. Albrecht, S. Akamine, T. E. Carver, C. F. Quate: Microfabrication of cantilever styli for the atomic force microscope, J. Vac. Sci. Technol. A 8(4) (1990) 3386–3396

    Article  CAS  Google Scholar 

  3. O. Wolter, T. Bayer, J. Greschner: Micromachined silicon sensors for scanning force microscopy, J. Vac. Sci. Technol. B 9(2) (1991) 1353–1357

    Article  CAS  Google Scholar 

  4. C. Bustamante, D. Keller: Scanning force microscopy in biology, Phys. Today 48(12) (1995) 32–38

    Article  Google Scholar 

  5. J. Vesenka, S. Manne, R. Giberson, T. Marsh, E. Henderson: Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules, Biophys. J. 65 (1993) 992–997

    Article  CAS  Google Scholar 

  6. D. J. Muller, D. Fotiadis, S. Scheuring, S. A. Muller, A. Engel: Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope, Biophys. J. 76(2) (1999) 1101–1111

    Article  CAS  Google Scholar 

  7. R. B. Marcus, T. S. Ravi, T. Gmitter, K. Chin, D. Liu, W. J. Orvis, D. R. Ciarlo, C. E. Hunt, J. Trujillo: Formation of silicon tips with <1 nm radius, Appl. Phys. Lett. 56(3) (1990) 236–238

    Article  CAS  Google Scholar 

  8. J. H. Hafner, C. L. Cheung, C. M. Lieber: unpublished results (2001)

    Google Scholar 

  9. J. H. Hafner, C. L. Cheung, T. H. Oosterkamp, C. M. Lieber: High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, J. Phys. Chem. B 105(4) (2001) 743–746

    Article  CAS  Google Scholar 

  10. F. Ohnesorge, G. Binnig: True atomic resolution by atomic force microscopy through repulsive and attractive forces, Science 260 (1993) 1451–1456

    Article  CAS  Google Scholar 

  11. D. J. Muller, D. Fotiadis, A. Engel: Mapping flexible protein domains at subnanometer resolution with the atomic force microscope, FEBS Lett. 430(1–2 Special Issue SI) (1998) 105–111

    Article  CAS  Google Scholar 

  12. S. Akamine, R. C. Barrett, C. F. Quate: Improved atomic force microscope images using microcantilevers with sharp tips, Appl. Phys. Lett. 57(3) (1990) 316–318

    Article  CAS  Google Scholar 

  13. D. J. Keller, C. Chih-Chung: Imaging steep, high structures by scanning force microscopy with electron beam deposited tips, Surf. Sci. 268 (1992) 333–339

    Article  CAS  Google Scholar 

  14. T. Ichihashi, S. Matsui: In situ observation on electron beam induced chemical vapor deposition by transmission electron microscopy, J. Vac. Sci. Technol. B 6(6) (1988) 1869–1872

    Article  CAS  Google Scholar 

  15. K. I. Schiffmann: Investigation of fabrication parameters for the electron-beam-induced deposition of contamination tips used in atomic force microscopy, Nanotechnology 4 (1993) 163–169

    Article  CAS  Google Scholar 

  16. J. H. Hafner, C. L. Cheung, A. T. Woolley, C. M. Lieber: Structural and functional imaging with carbon nanotube AFM probes, Prog. Biophys. Mol. Biol. 77(1) (2001) 73–110

    Article  CAS  Google Scholar 

  17. S. Iijima, C. Brabec, A. Maiti, J. Bernholc: Structural flexibility of carbon nanotubes, J. Chem. Phys. 104(5) (1996) 2089–2092

    Article  CAS  Google Scholar 

  18. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson: Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 381 (1996) 678–680

    Article  CAS  Google Scholar 

  19. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy: Young's modulus of single-walled nanotubes, Phys. Rev. B 58(20) (1998) 14013–14019

    Article  CAS  Google Scholar 

  20. E. W. Wong, P. E. Sheehan, C. M. Lieber: Nanobeam mechanics – elasticity, strength, and toughness of nanorods and nanotubes, Science 277(5334) (1997) 1971–1975

    Article  CAS  Google Scholar 

  21. J. P. Lu: Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 79(7) (1997) 1297–1300

    Article  CAS  Google Scholar 

  22. H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley: Nanotubes as nanoprobes in scanning probe microscopy, Nature 384(6605) (1996) 147–150

    Article  CAS  Google Scholar 

  23. A. G. Rinzler, Y. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, D. T. Colbert, R. E. Smalley: Unraveling nanotubes: Field emission from atomic wire, Science 269 (1995) 1550

    Article  CAS  Google Scholar 

  24. H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K. I. Hohmura, S. H. Yoshimura, K. Takeyasu: Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid, Appl. Phys. Lett. 74(26) (1999) 4061–4063

    Article  CAS  Google Scholar 

  25. S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov , C. M. Lieber: Single-walled carbon nanotube probes for high-resolution nanostructure imaging, Appl. Phys. Lett. 73(23) (1998) 3465–3467

    Article  CAS  Google Scholar 

  26. J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, R. E. Smalley: Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett. 296(1–2) (1998) 195–202

    Article  CAS  Google Scholar 

  27. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett. 313(1–2) (1999) 91–97

    Article  CAS  Google Scholar 

  28. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang: Large-scale synthesis of aligned carbon nanotubes, Science 274(5293) (1996) 1701–1703

    Article  CAS  Google Scholar 

  29. J. H. Hafner, C. L. Cheung, C. M. Lieber: Growth of nanotubes for probe microscopy tips, Nature 398(6730) (1999) 761–762

    Article  CAS  Google Scholar 

  30. V. Lehmann: The physics of macroporous silicon formation, Thin Solid Films 255 (1995) 1–4

    Article  CAS  Google Scholar 

  31. F. Ronkel, J. W. Schultze, R. Arensfischer: Electrical contact to porous silicon by electrodeposition of iron, Thin Solid Films 276(1–2) (1996) 40–43

    Article  CAS  Google Scholar 

  32. J. H. Hafner, C. L. Cheung, C. M. Lieber: Direct growth of single-walled carbon nanotube scanning probe microscopy tips, J. Am. Chem. Soc. 121(41) (1999) 9750–9751

    Article  CAS  Google Scholar 

  33. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate: Terabit-per-square-inch data storage with the atomic force microscope, Appl. Phys. Lett. 75(22) (1999) 3566–3568

    Article  CAS  Google Scholar 

  34. E. Yenilmez, Q. Wang, R. J. Chen, D. Wang, H. Dai: Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy, Appl. Phys. Lett. 80(12) (2002) 2225–2227

    Article  CAS  Google Scholar 

  35. A. Stemmer, A. Hefti, U. Aebi, A. Engel: Scanning tunneling and transmission electron microscopy on identical areas of biological specimens, Ultramicroscopy 30(3) (1989) 263

    Article  CAS  Google Scholar 

  36. R. Nicolaides, L. Yong, W. E. Packard, W. F. Zhou, H. A. Blackstead, K. K. Chin, J. D. Dow, J. K. Furdyna, M. H. Wei, R. C. Jaklevic, W. J. Kaiser, A. R. Pelton, M. V. Zeller, J. J. Bellina: Scanning tunneling microscope tip structures, J. Vac. Sci. Technol. A 6(2) (1988) 445–447

    Article  CAS  Google Scholar 

  37. J. P. Ibe, P. P. Bey, S. L. Brandow, R. A. Brizzolara, N. A. Burnham, D. P. DiLella, K. P. Lee, C. R. K. Marrian, R. J. Colton: On the electrochemical etching of tips for scanning tunneling microscopy, J. Vac. Sci. Technol. A 8 (1990) 3570–3575

    Article  CAS  Google Scholar 

  38. L. Libioulle, Y. Houbion, J.-M. Gilles: Very sharp platinum tips for scanning tunneling microscopy, Rev. Sci. Instrum. 66(1) (1995) 97–100

    Article  CAS  Google Scholar 

  39. A. J. Nam, A. Teren, T. A. Lusby, A. J. Melmed: Benign making of sharp tips for STM and FIM: Pt, Ir, Au, Pd, and Rh, J. Vac. Sci. Technol. B 13(4) (1995) 1556–1559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hafner, J.H. (2004). Probes in Scanning Microscopies. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics