Skip to main content

Heat Shock Response: Lessons from Mouse Knockouts

  • Chapter
Book cover Molecular Chaperones in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 172))

Abstract

Organisms are endowed with integrated regulatory networks that transduce and amplify incoming signals into effective responses, ultimately imparting cell death and/or survival pathways. As a conserved cytoprotective mechanism from bacteria to humans, the heat shock response has been established as a paradigm for inducible gene expression, stimulating the interests of biologists and clinicians alike to tackle fundamental questions related to the molecular switches, lineage-specific requirements, unique and/or redundant roles, and even efforts to harness the response therapeutically. Gene targeting studies in mice confirm HSF1 as a master regulator required for cell growth, embryonic development, and reproduction. For example, sterility of Hsf1-null female but not null male mice established strict requirements for maternal HSF1 expression in the oocyte. Yet Hsf2 knockouts by three independent laboratories have not fully clarified the role of mammalian HSF2 for normal development, fertility, and postnatal nuronal function. In contrast, Hsf4 knockouts have provided a consistent demonstration for HSF4’s critical role during lens formation. In the future, molecular analysis of HSF knockout mice will bring new insights to HSF interactions, foster better understanding of gene regulation at the genome level, lead to a better integration of the HSF pathway in life beyond heat shock, the classical laboratory challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, Joyner A, Koller BH, Lloyd KC, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, Stewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B (2004) The knockout mouse project. Nat Genet 36:921–924

    Article  PubMed  CAS  Google Scholar 

  • Brady JP, Garland DL, Green DE, Tamm ER, Giblin FJ, Wawrousek EF (2001) AlphaB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest Ophthalmol Vis Sci 42:2924–2934

    PubMed  CAS  Google Scholar 

  • Christians E, Davis AA, Thomas SD, Benjamin IJ (2000) Maternal effect of Hsf1 on reproductive success. Nature 407:693–694

    PubMed  CAS  Google Scholar 

  • Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Poorman-Allen P, Goulding EH, Eddy EM (1996) Targeted gene disruption of Hsp70-2 results in failed meiosis, germcell apoptosis, and male infertility. Proc Natl Acad Sci U S A 93:3264–3268

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada S, Kato K, Yonemura S, Inouye S, Nakai A (2004) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23:4297–4306

    Article  PubMed  CAS  Google Scholar 

  • Hampton CR, Shimamoto A, Rothnie CL, Griscavage-Ennis J, Chong A, Dix DJ, Verrier ED, Pohlman TH (2003) Heat-shock proteins 70.1 and 70.3 are required for late-phase protection induced by ischemic preconditioning of the mouse heart. Am J Physiol Heart Circ Physiol 285:H866–H874

    PubMed  CAS  Google Scholar 

  • He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J, Brown SA, Kingston RE, Calderwood SK (2003) Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 278: 35465–35475

    PubMed  CAS  Google Scholar 

  • Huang L, Mivechi NF, Moskophidis D (2001) Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 gene. Mol Cell Biol 21:8575–8591

    PubMed  CAS  Google Scholar 

  • Inouye S, Izu H, Takaki E, Suzuki H, Shirai M, Yokota Y, Ichikawa H, Fujimoto M, Nakai A (2004) Impaired IgG production in mice deficient for heat shock transcription factor 1. J Biol Chem 279:38701–38709

    PubMed  CAS  Google Scholar 

  • Inouye S, Katsuki K, Izu H, Fujimoto M, Sugahara K, Yamada S, Shinkai Y, Oka Y, Katoh Y, Nakai A (2003) Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol Cell Biol 23:5882–5895

    Article  PubMed  CAS  Google Scholar 

  • Izu H, Inouye S, Fujimoto M, Shiraishi K, Naito K, Nakai A (2004) Heat shock transcription factor 1 is involved in quality-control mechanisms in male germ cells. Biol Reprod 70:18–24

    PubMed  CAS  Google Scholar 

  • Jedlicka P, Mortin MA, Wu C (1997) Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J 16:2452–2462

    Article  PubMed  CAS  Google Scholar 

  • Joyeux-Faure M, Arnaud C, Godin-Ribuot D, Ribuot C (2003) Heat stress preconditioning and delayed myocardial protection: what is new? Cardiovasc Res 60:469–477

    Article  PubMed  CAS  Google Scholar 

  • Kallio M, Chang Y, Manuel M, Alastalo TP, Rallu M, Gitton Y, Pirkkala L, Loones MT, Paslaru L, Larney S, Hiard S, Morange M, Sistonen L, Mezger V (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 21:2591–2601

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Hur WY, Kang CD, Lim YS, Kim DW, Chung BS (1997) Involvement of heat shock factor in regulating transcriptional activation of MDR1gene in multidrug-resistant cells. Cancer Lett 115:9–14

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Seo JS (2002) Differential expression of two stress-inducible hsp70 genes by various stressors. Exp Mol Med 34:131–6

    PubMed  CAS  Google Scholar 

  • Lee SH, Kim M, Yoon BW, Kim YJ, Ma SJ, Roh JK, Lee JS, Seo JS (2001) Targeted hsp70.1 disruption increases infarction volume after focal cerebral ischemia in mice. Stroke 32:2905–2912

    PubMed  CAS  Google Scholar 

  • Lis J (1998) Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. Cold Spring Harb Symp Quant Biol 63:347–356

    Article  PubMed  CAS  Google Scholar 

  • Luft JC, Benjamin IJ, Mestril R, Dix DJ (2001) Heat shock factor 1-mediated thermotolerance prevents cell death and results in G2/M cell cycle arrest. Cell Stress Chaperones 6:326–336

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28: 51–65

    Article  PubMed  CAS  Google Scholar 

  • McMillan DR, Christians E, Forster M, Xiao X, Connell P, Plumier JC, Zuo X, Richardson J, Morgan S, Benjamin IJ (2002) Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function inmice. Mol Cell Biol 22:8005–8014

    Article  PubMed  CAS  Google Scholar 

  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruptionof heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI, Santoro MG (1998) Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol 16:833–838

    Article  PubMed  CAS  Google Scholar 

  • Morrison LE, Whittaker RJ, Klepper RE, Wawrousek EF, Glembotski CC (2004) Roles for alphaB-crystallin and HSPB2 in protecting the myocardium from ischemia-reperfusion-induced damage in a KO mouse model. Am J Physiol Heart Circ Physiol 286:H847–H855

    PubMed  CAS  Google Scholar 

  • Murray JI, Whitfield ML, Trinklein ND, Myers RM, Brown PO, Botstein D (2004) Diverse and specific gene expression responses to stresses in cultured human cells. Mol Biol Cell 15:2361–2374

    PubMed  CAS  Google Scholar 

  • Paslaru L, Morange M, Mezger V (2003) Phenotypic characterization of mouse embryonic fibroblasts lacking heat shock factor 2. J Cell Mol Med 7:425–435

    PubMed  CAS  Google Scholar 

  • Pespeni M, Hodnett M, Pittet JF (2005) In vivo stress preconditioning. Methods 35:158–164

    Article  PubMed  CAS  Google Scholar 

  • Pham CT, MacIvor DM, Hug BA, Heusel JW, Ley TJ (1996) Long-range disruption of gene expression by a selectable marker cassette. Proc Natl Acad Sci U S A 93:13090–13095

    Article  PubMed  CAS  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    Article  PubMed  CAS  Google Scholar 

  • Ray PS, Martin JL, Swanson EA, Otani H, Dillmann WH, Das DK (2001) Transgene over-expression of alphaB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. FASEB J 15:393–402

    Article  PubMed  CAS  Google Scholar 

  • Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98

    Article  PubMed  CAS  Google Scholar 

  • Shim EH, Kim JI, Bang ES, Heo JS, Lee JS, Kim EY, Lee JE, Park WY, Kim SH, Kim HS, Smithies O, Jang JJ, Jin DI, Seo JS (2002) Targeted disruption of hsp70.1 sensitizes to osmotic stress. EMBO Rep 3:857–861

    Article  PubMed  CAS  Google Scholar 

  • Singh IS, He JR, Calderwood S, Hasday JD (2002) A high affinity HSF-1 binding site in the 5′-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor. J Biol Chem 277: 4981–4988

    PubMed  CAS  Google Scholar 

  • Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15:1254–1261

    PubMed  CAS  Google Scholar 

  • Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, Libert C (2002) HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16:685–695

    PubMed  Google Scholar 

  • Voellmy R (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9:122–133

    Article  PubMed  CAS  Google Scholar 

  • Voss AK, Thomas T, Gruss P (2000) Mice lacking HSP90beta fail to develop a placental labyrinth. Development 127:1–11

    PubMed  CAS  Google Scholar 

  • Wang G, Ying Z, Jin X, Tu N, Zhang Y, Phillips M, Moskophidis D, Mivechi NF (2004) Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 38:66–80

    Article  PubMed  Google Scholar 

  • Wang G, Zhang J, Moskophidis D, Mivechi NF (2003) Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36: 48–61

    Article  PubMed  CAS  Google Scholar 

  • Wirth D, Christians E, Li X, Benjamin IJ, Gustin P (2003) Use of Hsf1(-/-) mice reveals an essential role for HSF1 to protect lung against cadmium-induced injury. Toxicol Appl Pharmacol 192:12–20

    Article  PubMed  CAS  Google Scholar 

  • Wolfer DP, Crusio WE, Lipp HP (2002) Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 25:336–340

    Article  PubMed  CAS  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18: 5943–5952

    PubMed  CAS  Google Scholar 

  • Xing H, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML, Hong Y, Park-Sarge OK, Sarge KD (2005) Mechanism of hsp70i gene bookmarking. Science 307:421–423

    Article  PubMed  CAS  Google Scholar 

  • Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21: 5164–5172

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Huang L, Zhang J, Moskophidis D, Mivechi N (2002) Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem 86:376–393

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Benjamin IJ, Basu S, Li Z (2003) Heat shock factor 1-independent activation of dendritic cells by heat shock: implication for the uncoupling of heat-mediated immunoregulation from the heat shock response. Eur J Immunol 33:1754–1762

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Li Z (2004) Cutting edge: cross-presentation of cell-associated antigens to MHC class I molecule is regulated by a major transcription factor for heat shock proteins. J Immunol 173:5929–5933

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.S. Christians .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Christians, E., Benjamin, I. (2006). Heat Shock Response: Lessons from Mouse Knockouts. In: Starke, K., Gaestel, M. (eds) Molecular Chaperones in Health and Disease. Handbook of Experimental Pharmacology, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29717-0_6

Download citation

Publish with us

Policies and ethics