Skip to main content

Summary

To meet the accuracy requirements of the GOCE mission, the gradiometer has to be calibrated and validated internally as well as externally. An internal quality assessment of the observed GOCE data is possible by comparisons of observations at the same satellite position, i.e. at satellite track cross-overs. Due to the orbit characteristics of the mission, satellite ground track cross-overs have to be used instead of identical repeat positions. Therefore, an appropriate reduction concept has to be applied to consider the differences caused by different satellite altitudes and orientations. It is shown here, that present global gravity field models meet the accuracy and resolution requirements for the reduction concept, and hence for the relative validation of GOCE gradients.

For an external calibration or validation based on regional data sets, terrestrial gravity anomalies are upward continued to gravitational gradients at GOCE altitude. The computations are done with synthetic data in a closed-loop simulation. Two upward continuation methods are considered, namely least-squares collocation and integral formulas based on the spectral combination technique. Both methods are described and the results are compared numerically with the ground-truth data. Finally, the results of a regional calibration experiment with simulated noisy GOCE gradients are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertella A, Migliaccio F, Sansò F (2000) The space-wise approach-Overall scientific data strategy. In: Sünkel H (ed.), ESA From Eötvös to Milligal Final Report. ESA/ESTEC Contract No. 13392/98/NL/GD, pp. 267–298, Graz

    Google Scholar 

  • Arabelos D and Tscherning CC (1998) Calibration of Satellite Gradiometer Data Aided by Ground Gravity Data. J. Geod. 72:617–625

    Article  Google Scholar 

  • Bouman J and Koop R (2003) Calibration of GOCE SGG Data Combining Terrestrial Gravity Data and Global Gravity Field Models. In: Tziavos IN (ed.), Gravity and Geoid 2002, Proc. 3rd Meeting of the International Gravity and Geoid Commission, pp. 275–280, Zeta Publ., Thessaloniki.

    Google Scholar 

  • Bouman J, Koop R, Tscherning CC and Visser P (2004) Calibration of GOCE SGG Data using High-low SST, Terrestrial Gravity Data and Global Gravity Field Models. J. Geod. 78:124–137

    Article  Google Scholar 

  • Brenner P, Mehrmann V, Sima V, Van Huffel S and Varga A (1999) SLICOT — A Subroutine Library in Systems and Control Theory. NICONET Technical Report 97-3

    Google Scholar 

  • Denker H (2003) Computation of Gravity Gradients Over Europe For Calibration/-Validation of GOCE Data. In: Tziavos IN (ed.), Gravity and Geoid 2002, Proc. 3rd Meeting of the International Gravity and Geoid Commission, pp. 287–292, Zeta Publ., Thessaloniki

    Google Scholar 

  • ESA (1999) Gravity Field and Steady-State Oean Circulation Mission, Reports for mission selection, The Four Candidate Earth Explorer Core Missions, SP-1233(1), ESA Publications Division, Noordwijk

    Google Scholar 

  • Haagmans R, de Min E and van Gelderen M (1993) Fast Evaluation of Convolution Integrals on the Sphere Using 1D FFT, and a Comparison with Existing Methods for Stokes’ Integral. Man. Geod. 18:227–241

    Google Scholar 

  • IAG-SC7 (2003) Satellite Gravity Field Missions: Simulation Scenarios, IAG-Special Commission VII (Section II), Satellite Gravity Field Missions, http://www.geod.uni-bonn.de/SC7/index.html, 13.10.2003

    Google Scholar 

  • Jarecki F and Müller J (2003) Validation of GOCE Gradients Using Cross-Overs, In: GEOTECHNOLOGIEN; Observation of the System Earth from Space, GEOTECHNOLOGIEN Science Report No. 3, pp. 79–84, Potsdam

    Google Scholar 

  • JPL (2003) GRACE Homepage, Jet Propulsion Laboratory, http://podaac.jpl.nasa.gov/grace/, 15.12.2003

    Google Scholar 

  • Kern M and Haagmans R (2005) Determination of Gravity Gradients from the Terrestrial Gravity Data for Calibration and Validation of Gradiometric GOCE Data. In: Jekeli C, Bastos L and Fernandes J (eds.), Proc. IAG International Symposium Gravity, Geoid and Space Missions, Porto, Aug. 30–Sept. 3, 2004, International Association of Geodesy Symposia, vol. 129. Springer, Berlin Heidelberg New York (in print)

    Google Scholar 

  • Koop R, Visser P and Tscherning CC (2001) Aspects of GOCE Calibration. In: Drinkwater MR (ed.), Proc. International GOCE User Workshop. European and national user group activities (Noordwijk), pp. 51–56. ESA/ESTEC, Noordwijk

    Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, and Olson TR (1998) The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. Technical Paper NASA/TP-1998-206861, NASA, Greenbelt, Maryland

    Google Scholar 

  • Min E de (1995) A Comparison of Stokes’ Numerical Integration and Collocation, and a New Combination Technique. Bull. Géod. 69:223–232

    Article  Google Scholar 

  • Moritz H (1971) Kinematical Geodesy II. Reports of the Department of Geodetic Science No 165, Department of Geodetic Science, Ohio State University, Columbus, Ohio

    Google Scholar 

  • Moritz H (1976) Integral Formulas and Collocation. Man. Geod. 1:1–40

    Google Scholar 

  • Moritz H (1980) Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe

    Google Scholar 

  • Müller J (2001) Die Satellitengradiometriemission GOCE, Theorie, technische Realisierung und wissenschaftliche Nutzung, Veröffentlichungen der Deutschen Geodätischen Kommission, Reihe C, Nr. 541, München

    Google Scholar 

  • Pail R (2002) In-orbit Calibration and Local Gravity Field Continuation Problem, In: Sünkel H (ed.), ESA From Eötvös to Milligal+ Final Report, ESA/ESTEC Contract No. 14287/00/NL/GD, pp. 9–112, Graz

    Google Scholar 

  • Schrama EJO (2001) External geophysical validation and calibration of an orbiting gravity gradiometer. In: Drinkwater MR (ed.), Proc. International GOCE User Workshop. European and national user group activities (Noordwijk), pp. 57–62. ESA/ESTEC, Noordwijk

    Google Scholar 

  • Shum CK, Zhang BH, Schutz BE, Tapley BD (1990) Altimeter Crossover Methods for Precision Orbit Determination and the Mapping of Geophysical Parameters, J. Astronaut. Sc. 38:355–368

    Google Scholar 

  • Smit M, Koop R, Visser P, vd IJssel J, Sneeuw N, Müller J, Oberndorfer H (2000) SID 2000: GOCE End to End Performance Analysis, ESA/ESTEC Contract No. 12735/98/NL/GD, Noordwijk

    Google Scholar 

  • Tscherning CC (1974) A FORTRAN IV Program for the Determination of the Anomalous Potential Using Stepwise Least-squares Collocation. Reports of the Department of Geodetic Science No 212, Department of Geodetic Science, Ohio State University, Columbus, Ohio

    Google Scholar 

  • Tscherning CC (1976) Computation of the Second-Order Derivatives of the Normal Potential Based on the Representation by a Legendre Series. Man. Geod. 1:71–92

    Google Scholar 

  • Tscherning CC and Rapp RH (1974) Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models. Reports of the Department of Geodetic Science No 208, Department of Geodetic Science, Ohio State University, Columbus, Ohio

    Google Scholar 

  • Weber G and Wenzel H-G (1983) Error Covariance Functions of Sea Gravity Data and Implications for Geoid Determination. Marine Geodesy 75(1–4):199–226

    Article  Google Scholar 

  • Wenzel H-G (1981) Zur Schätzung von Anomalie-Gradvarianzen aus lokalen Kovarianzfunktionen. ZfV 106(5):234–243

    Google Scholar 

  • Wenzel H-G (1982) Geoid Computation by Least-Squares Spectral Combination Using Integral Kernels. In: Proc. General Meeting of the IAG, pp. 438–453, Tokyo. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wenzel H-G (1985) Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde, Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover, Nr. 137, Hannover

    Google Scholar 

  • Wenzel H-G (1999) Schwerefeldmodellierung durch ultra hochauflösende Kugelfunktionsmodelle. ZfV 124(5):144–154

    Google Scholar 

  • Wolf KI (2005) Considering Coloured Noise of Ground Data in an Error Study for External GOCE Calibration / Validation. In: Proc. GOCINA Workshop, April, 13–15, 2005, Cahiers du Centre Europeen de Geodynamics et de Seismologie. Luxembourg. (submitted)

    Google Scholar 

  • Wolf KI and Denker H (2005) Upward Continuation of Ground Data for GOCE Calibration / Validation Purposes. In: Jekeli C, Bastos L and Fernandes J (eds.), Proc. IAG International Symposium Gravity, Geoid and Space Missions, Porto, Aug. 30 — Sept. 3, 2004, International Association of Geodesy Symposia, vol. 129. Springer, Berlin Heidelberg New York (in print)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jarecki, F., Wolf, K.I., Denker, H., Müller, J. (2006). Quality Assessment of GOCE Gradients. In: Flury, J., Rummel, R., Reigber, C., Rothacher, M., Boedecker, G., Schreiber, U. (eds) Observation of the Earth System from Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29522-4_19

Download citation

Publish with us

Policies and ethics