Skip to main content

Inteins for Split-Protein Reconstitutions and Their Applications

  • Chapter
Homing Endonucleases and Inteins

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 16))

Abstract

Our knowledge of biological systems relies increasingly on the ability of quantifying and imaging intracellular signals and events in living subjects. The development of novel methods and advances in biotechnology have provided many basic tools that allow analyses of the complex biological systems in living cells. Since the discovery of protein splicing in 1990, the elucidation of the splicing mechanism and the identification of key amino acid residues involved in the dissection and ligation of the peptide bonds have facilitated the molecular engineering of inteins for different applications in protein chemistry. These include protein purification, protein ligation and peptide cyclization, construction of split reporter proteins, regulation of protein activity, and introduction of non-natural amino acids. In this chapter, we focus on the construction of split reporter proteins and their applications for detecting protein- protein interactions, identification of organelle-localized proteins, growing safer transgenic plants, and screening antimycobacterial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergelson J, Purrington CB, Wichmann G (1998) Promiscuity in transgenic plants. Nature 395:25

    Article  PubMed  CAS  Google Scholar 

  • Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY, Ormo M, Remington SJ (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci USA 94:2306–2311

    Article  PubMed  CAS  Google Scholar 

  • Buskirk AR, Ong YC, Gartner ZJ, Liu DR (2004) Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci USA 101:10505–10510

    Article  PubMed  CAS  Google Scholar 

  • Chin HG, Kim GD, Marin I, Mersha F, Evans TC Jr, Chen L, Xu M-Q, Pradhan S (2003) Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. Proc Natl Acad Sci USA 100:4510–4515

    PubMed  CAS  Google Scholar 

  • Chong S, Xu MQ (1997) Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem 272:15587–15590

    Article  PubMed  CAS  Google Scholar 

  • Conti E, Franks NP, Brick P (1996) Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4:287–298

    Article  PubMed  CAS  Google Scholar 

  • David R, Richter MP, Beck-Sickinger AG (2004) Expressed protein ligation. Method and applications. Eur J Biochem 271:663–677

    Article  PubMed  CAS  Google Scholar 

  • Davis EO, Jenner PJ, Brooks PC, Colston MJ, Sedgwick SG (1992) Protein splicing in the maturation of M. tuberculosis recA protein: a mechanism for tolerating a novel class of intervening sequence. Cell 71:201–210

    PubMed  CAS  Google Scholar 

  • Evans TJT, Xu M-Q (2002) Mechanistic and kinetic considerations of protein splicing. Chem Rev 102:4869–4884

    CAS  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  • Gangopadhyay JP, Jiang SQ, Paulus H (2003) An in vitro screening system for protein splicing inhibitors based on green fluorescent protein as an indicator. Anal Chem 75:2456–2462

    Article  PubMed  CAS  Google Scholar 

  • Grimm S (2004) The art and design of genetic screens: mammalian culture cells. Nat Rev Genet 5:179–189

    Article  PubMed  CAS  Google Scholar 

  • Hirata R, Ohsumi Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (1990) Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265:6726–6733

    PubMed  CAS  Google Scholar 

  • Ho SN, Biggar SR, Spencer DM, Schreiber SL, Crabtree GR (1996) Dimeric ligands define a role for transcriptional activation domains in reinitiation. Nature 382:822–826

    Article  PubMed  CAS  Google Scholar 

  • Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250:651–657

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Makino S, Matsuzawa H, Satow Y, Ohya Y, Anraku Y (1996) Folding-dependent in vitro protein splicing of the Saccharomyces cerevisiae VMA1 protozyme. Biochem Biophys Res Commun 222:827–832

    Article  PubMed  CAS  Google Scholar 

  • Kim SB, Ozawa T, Watanabe S, Umezawa Y (2004) High-throughput sensing and noninvasive imaging of protein nuclear transport by using reconstitution of split Renilla luciferase. Proc Natl Acad Sci USA 101:11542–11547

    PubMed  CAS  Google Scholar 

  • Lorenz WW, McCann RO, Longiaru M, Cormier MJ (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci USA 88:4438–4442

    PubMed  CAS  Google Scholar 

  • Martin DD, Xu M-Q, Evans TC Jr (2001) Characterization of a naturally occurring trans-splicing intein from Synechocystis sp. PCC6803. Biochemistry 40:1393–1402

    PubMed  CAS  Google Scholar 

  • Mootz HD, Muir TW (2002) Protein splicing triggered by a small molecule. J Am Chem Soc 124:9044–9045

    PubMed  CAS  Google Scholar 

  • Mootz HD, Blum ES, Tyszkiewicz AB, Muir TW (2003) Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc 125:10561–10569

    Article  PubMed  CAS  Google Scholar 

  • Nishiuchi Y, Inui T, Nishio H, Bodi J, Kimura T, Tsuji FI, Sakakibara S (1998) Chemical synthesis of the precursor molecule of the Aequorea green fluorescent protein, subsequent folding, and development of fluorescence. Proc Natl Acad Sci USA 95:13549–13554

    Article  PubMed  CAS  Google Scholar 

  • Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    PubMed  CAS  Google Scholar 

  • Ozawa T, Umezawa Y (2002) Peptide assemblies in living cells. Methods for detecting protein-protein interactions. Supramol Chem 14:271–280

    Article  CAS  Google Scholar 

  • Ozawa T, Nogami S, Sato M, Ohya Y, Umezawa Y (2000) A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal Chem 72:5151–5157

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T, Kaihara A, Sato M, Tachihara K, Umezawa Y (2001a) Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal Chem 73:2516–2521

    PubMed  CAS  Google Scholar 

  • Ozawa T, Nishitani K, Sako Y, Umezawa Y (2005) A high-throughput screening of genes that encode proteins transported into the endoplasmic reticulum in mammalian cells. Nucleic Acids Res 33:e34

    Article  PubMed  Google Scholar 

  • Ozawa T, Takeuchi TM, Kaihara A, Sato M, Umezawa Y (2001b) Protein splicing-based reconstitution of split green fluorescent protein for monitoring protein-protein interactions in bacteria: improved sensitivity and reduced screening time. Anal Chem 73:5866–5874

    PubMed  CAS  Google Scholar 

  • Ozawa T, Sako Y, Sato M, Kitamura T, Umezawa Y (2003) A genetic approach to identifying mitochondrial proteins. Nat Biotechnol 21:287–293

    Article  PubMed  CAS  Google Scholar 

  • Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci USA 99:15608–15613

    Article  PubMed  CAS  Google Scholar 

  • Paulus H (2003) Inteins as targets for potential antimycobacterial drugs. Front Biosci 8:s1157–s1165

    PubMed  CAS  Google Scholar 

  • Pietrokovski S (1998) Modular organization of inteins and C-terminal autocatalytic domains. Protein Sci 7:64–71

    PubMed  CAS  Google Scholar 

  • Shioda T, Andriole S, Yahata T, Isselbacher KJ (2000) A green fluorescent protein-reporter mammalian two-hybrid system with extrachromosomal maintenance of a prey expression plasmid: application to interaction screening. Proc Natl Acad Sci USA 97:5220–5224

    Article  PubMed  CAS  Google Scholar 

  • Westermann B, Neupert W (2003) ’Omics’ of the mitochondrion. Nat Biotechnol 21:239–240

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Hu Z, Liu XQ (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 95:9226–9231

    PubMed  CAS  Google Scholar 

  • Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ozawa, T., Umezawa, Y. (2005). Inteins for Split-Protein Reconstitutions and Their Applications. In: Belfort, M., Wood, D.W., Stoddard, B.L., Derbyshire, V. (eds) Homing Endonucleases and Inteins. Nucleic Acids and Molecular Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29474-0_18

Download citation

Publish with us

Policies and ethics