Skip to main content

The Various Sources and the Fate of Nucleic Acids in Soil

  • Chapter
Nucleic Acids and Proteins in Soil

Part of the book series: Soil Biology ((SOILBIOL,volume 8))

6.7 Conclusions

Soil is a habitat for millions of prokaryotes per g and is also inhabited by fungi, animals and plants. DNA is present in soil within the living and dead organisms and also in extracellular form after release during life and death phases of cells. Extracellular DNA distributes to soil liquid and to the surface of particulate material by adsorption in soil-specific kinetics and proportions. Depending on the soil, DNA in the liquid phase is degraded within hours or days by ubiquitous DNases which are mostly of prokaryotic origin. Mineral-adsorbed DNA is partially protected against enzymatic degradation. Despite continual degradation DNA can persist in soil for extended periods like months or even years. DNA of transgenic plants can be traced specifically by PCR amplification and other molecular and biological assays due to its unique recombinant constructs. Recombinant DNA has been detected in soil samples up to 5 years after growth of the transgenic plants. The DNA probably persisted within plant tissue material and pollen and perhaps even as free DNA. Typically, DNA introduced into soils either within cells or tissue material or as naked DNA was degraded by biphasic kinetics with rather rapid degradation at early times and much slower during later stages. DNA recovered even after 5 years had maintained its functionality in the sense that it could experimentally transform naturally competent bacteria including expression of its genetic information. It has been proposed that in soil the continual production and degradation of DNA provides a dynamic extracellular gene pool of DNA from all soil organisms. The pool is mainly present on the mineral surfaces from which naturally transformable bacteria can take up genetic information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aardema BW, Lorenz MG, Krumbein WE (1983) Protection of sediment-adsorbed transforming DNA against enzymatic inactivation. Appl Environ Microbiol 46:417–420

    PubMed  CAS  Google Scholar 

  • Adamo JA, Gealt MA (1996) A demonstration of bacterial conjugation within the alimentary canal of Rhabditis nematodes. FEMS Microbiol Ecol 20:15–22

    Article  CAS  Google Scholar 

  • Agnelli A, Ascher J, Corti G, Ceccherini MT, Nannipieri P, Pietramellara G (2004) Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol Biochem 36:859–868

    Article  CAS  Google Scholar 

  • Ahrenholtz I, Lorenz MG, Wackernagel W (1994) The extracellular nuclease of Serratia marcescens: studies on the activity in vitro and effect on transforming DNA in a groundwater aquifer microcosm. Arch Microbiol 161:176–183

    PubMed  CAS  Google Scholar 

  • Arber W (2000) Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24:1–7

    Article  PubMed  CAS  Google Scholar 

  • Basse G, Lorenz MG, Wackernagel W (1994) A biological assay for the sensitive and quantitative detection of extracellular microbial DNases. J Microbiol Methods 20:137–147

    Article  CAS  Google Scholar 

  • Bishop DHL, Entwistle PF, Cameron IR, Allen CJ, Possee RD (1988) Field trials of genetically-engineered Baculovirus insecticides. In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DE (eds) The release of genetically-engineered micro-organisms. Academic Press, London, pp 143–179

    Google Scholar 

  • Blum SAE (1997) Die Ãœberdauerung extrazellulärer DNA im Boden. PhD thesis, University of Oldenburg, Germany

    Google Scholar 

  • Blum SAE, Lorenz MG, Wackernagel W (1997) Mechanisms of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soil. System Appl Microbiol 20:513–521

    CAS  Google Scholar 

  • Börsheim KY (1993) Native marine bacteriophages. FEMS Microbiol Ecol 102:141–159

    Article  Google Scholar 

  • Bollum FJ (1965) Degradation of the homopolymer complexes polydeoxyadenylate-polydeoxythymidylate, polydeoxyinosinate-polydeoxycytidylate, and polydeoxyguanylate-polydeoxycytidylate by deoxyribonuclease I. J Biol Chem 240:2599–2601

    PubMed  CAS  Google Scholar 

  • Brandt P (2003) Overview of the current status of genetically modified plants in Europe as compared to the USA. J Plant Physiol 160:735–742

    Article  PubMed  CAS  Google Scholar 

  • Bürgmann H, Pesaro M, Widmer F, Zeyer J (2001) A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods 45:7–20

    Article  PubMed  Google Scholar 

  • Ceccherini MT, Poté J, Kay E, Van VT, Maréchal J, Pietramellara G, Nannipieri P, Vogel TM, Simonet P (2003) Degradation and transformability of DNA from transgenic leaves. Appl Environ Microbiol 69:673–678

    Article  PubMed  CAS  Google Scholar 

  • Chamier B, Lorenz MG, Wackernagel W (1993) Natural transformation of Acinetobacter calcoaceticus by plasmid DNA adsorbed on sand and groundwater aquifer material. Appl Environ Microbiol 59:1662–1667

    PubMed  CAS  Google Scholar 

  • Crabb WD, Streips UN, Doyle RJ (1977) Selective enrichment for genetic markers in DNA released by competent cultures of Bacillus subtilis. Mol Gen Genet 155:179–183

    Article  PubMed  CAS  Google Scholar 

  • Demanèche S, Jocteur-Monrozier L, Quiquampoix H, Simonet P (2001) Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA. Appl Environ Microbiol 67:293–299

    Article  PubMed  Google Scholar 

  • de Vries J, Wackernagel W (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker rescue transformation. Mol Gen Genet 257:606–613

    Article  PubMed  Google Scholar 

  • de Vries J, Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci USA 99:2094–2099

    Article  PubMed  CAS  Google Scholar 

  • de Vries J, Wackernagel W (2005) Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266:91–104

    Article  Google Scholar 

  • de Vries J, Meier P, Wackernagel W (2001) The natural transformation of Pseudomonas stutzeri and Acinetobacter sp. by kanamycin resistance genes (nptII) present in plasmids and the genome of transgenic plants depends on homologous sequences in the recipient cells. FEMS Microbiol Lett 195:211–215

    Article  PubMed  Google Scholar 

  • de Vries J, Heine M, Harms K, Wackernage lW (2003) Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of Acinetobacter sp. Appl Environ Microbiol 69:4455–4462

    Article  PubMed  CAS  Google Scholar 

  • de Vries J, Herzfeld T, Wackernagel W (2004) Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol Microbiol 53:323–334

    Article  PubMed  CAS  Google Scholar 

  • Dorward DW, Garon CF (1990) DNA is packaged within membrane-derived vesicles of gram-negative but not gram-positive bacteria. Appl Environ Microbiol 56:1960–1962

    PubMed  CAS  Google Scholar 

  • Drahos DJ, Barry GF, Hemming BC, Brandt EJ, Skipper HD, Kline EL, Kluepfel DA, Hughes TA, Gooden DT (1988) Pre-release testing procedures: US field test of a lacZY-engineered soil bacterium. In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DE (eds) The release of genetically-engineered microorganisms. Academic Press, London, pp 182–191

    Google Scholar 

  • England LS, Lee H, Trevors JT (1993) Bacterial survival in soil: effect of clays and protozoa. Soil Biol Biochem 25:525–531

    Article  Google Scholar 

  • Franchi M, Ferris JP, Gallori E (2003) Cations as mediator of the adsorption of nucleic acids on clay surfaces in prebiotic environments. Orig Life Evol Biosphere 33:1–16

    Article  CAS  Google Scholar 

  • FrostegÃ¥rd A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed  Google Scholar 

  • Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. BD413 by transgenic sugar beet DNA. Appl Environ Microbiol 64:1550–1554

    PubMed  CAS  Google Scholar 

  • Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol Ecol 28:261–272

    Article  CAS  Google Scholar 

  • Graupner S, Wackernagel W (1996) Identification of multiple plasmids released from recombinant genomes of Hansenula polymorpha by transformation of Escherichia coli. Appl Environ Microbiol 62:1839–1841

    PubMed  CAS  Google Scholar 

  • Greaves MP, Wilson MJ (1969) The adsorption of nucleic acids by montmorillonite. Soil Biol Biochem 1:317–323

    Article  CAS  Google Scholar 

  • Greaves MP, Wilson MJ (1970) The degradation of nucleic acids and montmorillonitenucleic-acids complexes by soil microorganisms. Soil Biol Biochem 2:257–268

    Article  CAS  Google Scholar 

  • Hesselink FT (1983) Adsorption of polyelectrolytes from dilute solution. In: Parfitt GD, Rochester CH (eds) Adsorption from solution at the solid/liquid interface. Academic Press, London, pp 377–412

    Google Scholar 

  • Hoffmann A, Thimm T, Dröge M, Moore ERB, Munch JC, Tebbe CC (1998) Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola). Appl Environ Microbiol 64:2652–2659

    PubMed  CAS  Google Scholar 

  • Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711

    PubMed  CAS  Google Scholar 

  • Ivarson KC, Schnitzer M, Cortez J (1982) The biodegradability of nucleic acid bases adsorbed on inorganic and organic soil components. Plant Soil 64:343–353

    Article  CAS  Google Scholar 

  • Jonas DA, Elmadfa I, Engel K-H, Heller KJ, Kozianowski G, König A, Müller D, Narbonne J-F, Wackernagel W, Kleiner J (2001) Safety considerations of DNA in food. Ann Nutr Metab 45:1–20

    Article  Google Scholar 

  • Khanna M, Stotzky G (1992) Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl Environ Microbiol 58:1930–1939

    PubMed  CAS  Google Scholar 

  • Kruske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PJ (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microbiol 64:2463–2472

    Google Scholar 

  • Lindow SE, Panopoulos NJ (1988) Field tests of recombinant ice? Pseudomonas syringae for biological frost control in potato. In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DE (eds) The release of genetically-engineered micro-organisms. Academic Press, London, pp 121–138

    Google Scholar 

  • Lorenz MG (1992) Gene transfer via transformation in soil/sediment environments. In: Gauthier MJ (ed) Gene transfers and environment. Springer, Berlin Heidelberg New York, pp 95–101

    Google Scholar 

  • Lorenz MG, Wackernagel W (1987) Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl Environ Microbiol 53:2948–2952

    PubMed  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1992) DNA binding to various clay minerals and retarded enzymatic degradation of DNA in a sand/clay microcosm. In: Gauthier MJ (ed) Gene transfers and environment. Springer, Berlin Heidelberg New York, pp 103–113

    Google Scholar 

  • Lorenz MG, Wackernage lW (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    PubMed  CAS  Google Scholar 

  • Lorenz MG, Aardema BW, Krumbein WA (1981) Interaction of marine sediment with DNA and DNA availability to nucleases. Mar Biol 64:225–230

    Article  CAS  Google Scholar 

  • Lorenz MG, Aardema BW, Wackernagel W (1988) Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J Gen Microbiol 134:107–112

    PubMed  CAS  Google Scholar 

  • Lorenz MG, Gerjets D, Wackernagel W (1991) Release of transforming plasmid and chromosomal DNA from two cultured soil bacteria. Arch Microbiol 156:319–326

    Article  PubMed  CAS  Google Scholar 

  • Meier P, Wackernage lW (2003a) Monitoring the spread of recombinant DNA from field plots with transgenic sugar beet plants by PCR and natural transformation of Pseudomonas stutzeri. Transgenic Res 12:293–304

    Article  PubMed  CAS  Google Scholar 

  • Meier P, Wackernagel W (2003b) Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. MolMicrobiol 48:1107–1118

    CAS  Google Scholar 

  • Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724

    PubMed  CAS  Google Scholar 

  • Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57–66

    Article  CAS  Google Scholar 

  • Ogram A, Sayler GS, Gustin D, Lewis RJ (1988) DNA adsorption to soils and sediments. Environ Sci Technol 22:982–984

    Article  CAS  Google Scholar 

  • Ogram AV, Mathot ML, Harsh JB, Boyle J, Pettigrew CA Jr (1994) Effects of DNA polymer length on its adsorption to soils. Appl Environ Microbiol 60:393–396

    PubMed  CAS  Google Scholar 

  • Paget E, Monrozier JL, Simonet P (1992) Adsorption of DNA on clay minerals: protection against DNaseI and influence on gene transfer. FEMS Microbiol Lett 97:31–40

    Article  CAS  Google Scholar 

  • Paget E, Lebrun M, Freyssinet G, Simonet P (1998) The fate of recombinant plant DNA in soil. Eur J Soil Biol 34:81–88

    Article  CAS  Google Scholar 

  • Palmen R, Hellingwerf KJ (1995) Acinetobacter calcoaceticus liberates chromosomal DNA during induction of competence by cell lysis. Curr Microbiol 30:7–10

    Article  PubMed  CAS  Google Scholar 

  • Palmen R, Vosman B, Buijsman P, Breek CKD, Hellingwerf KJ (1993) Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J Gen Microbiol 139:295–305

    PubMed  CAS  Google Scholar 

  • Paul JH, DeFlaun MF, Jeffrey WH, David AW (1988) Seasonal and diel variability in dissolved DNA and in microbial biomass and activity in a subtropical estuary. Appl Environ Microbiol 54:718–727

    PubMed  CAS  Google Scholar 

  • Paul JH, Jeffrey WH, David AW, DeFlaun MF, Cazares LH (1989) Turnover of extracellular DNA in eutrophic and oligotrophic freshwater environments of southwest Florida. Appl Environ Microbiol 55:1823–1828

    PubMed  CAS  Google Scholar 

  • Pietramellara G, Franchi M, Gallori E, Nannipieri P (2001) Effect of molecular characteristics of DNA on its adsorption and binding on homoionic montmorillonite and kaolinite. Biol Fertil Soils 33:402–409

    Article  CAS  Google Scholar 

  • Pillai SD, Josephson KL, Bailey RL, Gerba CP, Pepper IL (1991) Rapid method for processing soil samples for polymerase chain reaction amplification of specific gene sequences. Appl Environ Microbiol 57:2283–2286

    PubMed  CAS  Google Scholar 

  • Poly F, Chenu C, Simonet P, Rouiller J, Jocteur-Monrozier L (2000) Differences between linear chromosomal and supercoiled plasmid DNA in their mechanisms and extent of adsorption on clay minerals. Langmuir 16:1233–1238

    Article  CAS  Google Scholar 

  • Porteous LA, Armstrong JL (1993) A simple mini-method to extract DNA directly from soil for use with polymerase chain reaction amplification. Curr Microbiol 27:115–118

    Article  PubMed  CAS  Google Scholar 

  • Porteous LA, Seidler RJ, Watrud LS (1997) An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications. Mol Ecol 6:787–791

    Article  CAS  Google Scholar 

  • Proctor LM, Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature (London) 343:60–62

    Article  Google Scholar 

  • Prudhomme M, Libante V, Claverys JP (2002) Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc Natl Acad Sci USA 99:2100–2105

    Article  PubMed  CAS  Google Scholar 

  • Reanney DC, Roberts WP, Kelly WJ (1982) Genetic interactions among microbial communities. In: Bull AT, Slater JH (eds) Microbial interactions and communities. Academic Press, London, pp 287–322

    Google Scholar 

  • Reanney DC, Gowland PC, Slater JH (1983) Genetic interactions among microbial communities. In: Slater JH, Whittenbury R, Wimpenny JWT (eds) Microbes in their natural environments. Cambridge University Press, Cambridge, pp 379–421

    Google Scholar 

  • Recorbet G, Picard C, Normand P, Simonet P (1993) Kinetics of the persistence of chromosomal DNA from genetically engineered Escherichia coli introduced into soil. Appl Environ Microbiol 59:4289–4294

    PubMed  CAS  Google Scholar 

  • Redfield RJ (2001) Do bacteria have sex? Nat Rev Genet 2:634–639

    Article  PubMed  CAS  Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel TM, Simonet P (2003) Extraction of DNA fromsoil. Eur J Soil Biol 39:183–190

    Article  CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Wackernagel W (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl Environ Microbiol 57:1057–1061

    PubMed  CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Sayler G, Wackernagel W (1992) Persistence of free plasmid DNA in soil monitored by various methods, including a transformation assay. Appl Environ Microbiol 58:3012–3019

    PubMed  CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Wackernagel W (1993a) Plasmid DNA in a groundwater aquifer microcosm: adsorption, DNase resistance and natural genetic transformation of Bacillus subtilis. Mol Ecol 2:171–181

    PubMed  CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Wackernagel W (1993b) Use of polymerase chain reaction and electroporation of Escherichia coli to monitor the persistence of extracellular plasmid DNA introduced into natural soils. Appl Environ Microbiol 59:3438–3446

    PubMed  CAS  Google Scholar 

  • Roose-Amsaleg CL, Garnier-Sillam E, Harry M (2001) Extraction and purification of microbial DNA from soil and sediment samples. Appl Soil Ecol 18:47–60

    Article  Google Scholar 

  • Schubbert R, Lettmann C, Doerfler W (1994) Ingested foreign (phage M13) DNA survives transiently in the gastrointestinal tract and enters the bloodstream of mice. Mol Gen Genet 242:495–504

    Article  PubMed  CAS  Google Scholar 

  • Schubbert R, Renz D, Schmitz B, Doerfler W (1997) Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc Natl Acad Sci USA 94:961–966

    Article  PubMed  CAS  Google Scholar 

  • Selbitschka W, Jording D, Nieman S, Schmidt R, Puhler A, Mendum T, Hirsch P (1995) Construction and characterization of a Rhizobium leguminosarum biovar viciae strain designed to assess horizontal gene transfer in the environment. FEMS Microbiol Lett 128:255–263

    Article  PubMed  CAS  Google Scholar 

  • Selenska S, Klingmüller W (1991) DNA recovery and direct detection of Tn5 sequences from soil. Lett Appl Microbiol 13:21–24

    PubMed  CAS  Google Scholar 

  • Sinha RP, Iyer VN (1971) Competence for genetic transformation and the release of DNA from Bacillus subtilis. Biochim Biophys Acta 232:61–71

    PubMed  CAS  Google Scholar 

  • Sikorski J, Graupner S, Lorenz MG, Wackernagel W (1998) Natural genetic transformation of Pseudomonas stutzeri in a nonsterile soil. Microbiology 144:569–576

    Article  PubMed  CAS  Google Scholar 

  • Smalla K, Cresswell N, Mendonca-Hagler LC, Wolters A, van Elsas JD (1993) Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J Appl Bacteriol 74:78–85

    CAS  Google Scholar 

  • Steffan RJ, Atlas RM (1988) DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl Environ Microbiol 54:2185–2191

    PubMed  CAS  Google Scholar 

  • Steffan RJ, Goksoyr J, Bej AK, Atlas RM (1988) Recovery of DNA from soils and sediments. Appl Environ Microbiol 54:2908–2915

    PubMed  CAS  Google Scholar 

  • Stewart-Tull DES, Sussman M(1992) The release of geneticallymodified microorganisms-REGEM 2. Plenum Press, New York

    Google Scholar 

  • Stotzky G (1986) Influence of soil mineral colloids onmetabolic processes, growth, adhesion, and ecology of microbes and viruses. In: Huang M, Schnitzer M (eds) Interactions of soil mineralswith natural organics and microbes. SSSA Special Publication. Soil Science Society of America, Madison, WI, pp 305–428

    Google Scholar 

  • Svarachorn A, Shinmyo A, Tsuchido T, Takano M (1989) Dependence of autolysis of Bacillus subtilis cells on macromolecule synthesis under nutrient limitation. J Ferment Bioeng 68:252–256

    Article  CAS  Google Scholar 

  • Svarachorn A, Tsuchido T, Shinmyo A, Takano M (1991) Autolysis of Bacillus subtilis induced by low temperature. J Ferment Bioeng 71:281–283

    Article  CAS  Google Scholar 

  • Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59:2657–2665

    PubMed  CAS  Google Scholar 

  • Tebbe CC, Wenderoth DF, Vahjen W, Lübke K, Munch JC (1995) Direct detection of recombinant gene expression by two genetically engineered yeasts in soil on the transcriptional and translational levels. Appl Environ Microbiol 61:4296–4303

    PubMed  CAS  Google Scholar 

  • Tepfer D, Garcia-Gonzales R, Mansouri H, Seruga M, Message B, Leach F, Perica MC (2003) Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: implications in evolution and horizontal gene transfer. Transgenic Res 12:425–437

    Article  PubMed  CAS  Google Scholar 

  • Thimm T, Hoffmann A, Fritz I, Tebbe CC (2001) Contribution of the earthworm Lumbricus rubellus (Annelida, Oligochaeta) to the establishment of plasmids in soil bacterial communities. Microb Ecol 41:341–351

    PubMed  CAS  Google Scholar 

  • Tien CC, Chao CC, Chao WL (1999) Methods for DNA extraction from various soils: a comparison. J Appl Microbiol 86:937–943

    Article  CAS  Google Scholar 

  • Tønjum T, Bøver K, Juni E (1995) Fastidious Gram-negative bacteria: meeting the diagnostic challenge with nucleic acid analysis. APMIS 103:609–627

    Article  PubMed  Google Scholar 

  • Torsvik VL (1980) Isolation of bacterial DNA from soil. Soil Biol Biochem 10:15–21

    Article  Google Scholar 

  • Torsvik VL, Goksoyr J (1978) Determination of bacterial DNA in soil. Soil Biol Biochem 10:7–12

    Article  Google Scholar 

  • Tsai Y-L, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57:1070–1074

    PubMed  CAS  Google Scholar 

  • Turk V, Rehnstam AS, Lundberg E, Hagström A (1992) Release of bacterial DNA by marine nanoflagellates, an intermediate step in phosphorus regeneration. Appl Environ Microbiol 58:3744–3750

    PubMed  CAS  Google Scholar 

  • Van den Eede G, Aarts H, Buhk H-J, Corthier G, Flint HJ, Hammes W, Jacobsen B, Midtvedt T, Van der Vossen J, von Wright A, Wackernagel W, Wilcks A (2004) The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem Toxicol 42:1127–1156

    Article  PubMed  CAS  Google Scholar 

  • Van Elsas JD, Trevors JT (1995) Nucleic acids in the environment:methods and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wackernagel W (1996) Persistence of DNA in the environment and its potential for bacterial genetic transformation. In: Schmidt ER, Hankeln T (eds) Transgenic organisms and biosafety. Horizontal gene transfer, stability of DNA and expression of transgenes. Springer, Berlin Heidelberg New York, pp 137–146

    Google Scholar 

  • Widmer F, Seidler RJ, Watrud LS (1996) Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Mol Ecol 5:603–613

    CAS  Google Scholar 

  • Widmer F, Seidler RJ, Donegan KK, Reed GL (1997) Quantification of transgenic plant marker gene persistence in the field. Mol Ecol 6:1–7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wackernagel, W. (2006). The Various Sources and the Fate of Nucleic Acids in Soil. In: Nannipieri, P., Smalla, K. (eds) Nucleic Acids and Proteins in Soil. Soil Biology, vol 8. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29449-X_6

Download citation

Publish with us

Policies and ethics