Skip to main content

Closed-loop, Fieldbus-based Clock Synchronisation for Decentralised Control Systems

  • Chapter
Book cover Reconfigurable Manufacturing Systems and Transformable Factories

Abstract

The absolute positioning accuracy of a motion control system is, making abstraction of errors induced by imperfections of the transmission, completely determined by the positioning accuracy of the individual actuators. Accurate contouring additionally requires high degrees of synchronisation between actuators. Indeed, the superposition of two orthogonal and sinusoidal movements only results in a perfect circle if both have exactly the same frequency and if they are out of phase by exactly ninety degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan DW (1966) Statistics of atomic frequency standards. Proceedings of the IEEE 54:221–231

    Article  Google Scholar 

  2. Allan DW (1987) Time and Frequency Characterization, Estimation, and Prediction of Precision Clocks and Oscillators. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 34:647–654

    Google Scholar 

  3. Allan DW (1989) In Search of the best clock. IEEE Transactions on Instrumentation and Measurement 38:624–630

    Article  Google Scholar 

  4. Allan DW, Ashby N, Hodge CC (1997) The science of timekeeping, application note 1289. (Hewlett-Packard Company technical report number 5965–7984E)

    Google Scholar 

  5. Allan DW, Barnes J, Cordara F, Garvey M, Hanson W, Kinsman R, Kusters J, Smythe R, Walls FL (1992) Precision Oscillators: Dependence of Frequency on Temperature, Humidity and Pressure. In: Proceedings of the 1992 IEEE Frequency Control Symposium, pp 782–793

    Google Scholar 

  6. Barnes JA (1971) Characterization of frequency stability. IEEE Transactions on Instrumentation and Measurement 20:105–120

    Article  Google Scholar 

  7. Demeester E, Koninckx R, Waarsing BJW, Vanhooydonck D, Nuttin M, Van Brussel H (2002) An innovative decentralised motion control architecture for a humanoid robot. In: Proceedings of the 5th International Conference on Climbing and Walking Robots. pp 859–866

    Google Scholar 

  8. Franklin GF, Powell JD, Emami-Naeini A (1994) Feedback control of dynamic systems. Addison-Wesley, Reading

    Google Scholar 

  9. Greenhall CA (1998) Spectral Ambiguity of Allan Variance. IEEE Transactions on Instrumentation and Measurement 47:623–627

    Article  Google Scholar 

  10. Koninckx R, (2003) Modular, Distributed Motion planning, Interpolation and Execution. Ph.D. thesis, Katholieke Universiteit Leuven

    Google Scholar 

  11. Koninckx R, Van Brussel H, Demeulenaere B, Swevers J, Meijerman N, Peeters F, Van Eijk J (2001) Closed-Loop, Fieldbus-Based Clock Synchronisation for Decentralised Control Systems. In: Proceedings of the CIRP first international conference on agile, reconfigurable manufacturing.

    Google Scholar 

  12. Meyr H, Ascheid G (1990) Synchronization in Digital Communications. John Wiley & Sons, New York

    Google Scholar 

  13. Mills DL (1994) Precision synchronization of computer network clocks. ACM Computer Communication Review 24:28–43

    Article  Google Scholar 

  14. Mills DL (1995) Improved Algorithms for Synchronizing Computer Network Clocks. IEEE/ACM Transactions on networking 3:245–254

    Article  MathSciNet  Google Scholar 

  15. Razavi B (1996) Monolithic Phase-Locked Loops and Clock Recovery Circuits: Theory and design. IEEE Press, Piscataway

    Google Scholar 

  16. Thielemans H (1998) Motion User Requirements Specification. (Requirements specification by the Katholieke Universiteit Leuven for the Brite-Euram III project BRPR-CT97-0362 MOTION)

    Google Scholar 

  17. Van Den Haspel RC (2000) Tuning and performance measurements FIDIA Demonstrator. (Philips CFT technical report number CTB595-00-2154)

    Google Scholar 

  18. Walls FD, Allan DW (1986) Measurements of frequency stability. Proceedings of the IEEE 74:162–168

    Google Scholar 

  19. (1991) BOSCH CAN Specification. (Version 2.0, Published by Robert Bosch GmbH, Postfach 50, D-7000 Stuttgart 1)

    Google Scholar 

  20. (1996) CAL-based Communication Profile for Industrial Systems. (CiA Draft Standard 301, version 3.0)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Koninckx, R., Brussel, H.V. (2006). Closed-loop, Fieldbus-based Clock Synchronisation for Decentralised Control Systems. In: Dashchenko, A.I. (eds) Reconfigurable Manufacturing Systems and Transformable Factories. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29397-3_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-29397-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29391-0

  • Online ISBN: 978-3-540-29397-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics