Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 1081 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.3.5 Literatur

  • Beck-Peccoz P, Persani L (2002) Medical management of thyrotropin-secreting pituitary adenomas. Pituitary 5:83–88

    Article  PubMed  CAS  Google Scholar 

  • Bedford FK, Ashworth A, Enver T, Wiedemann LM (1993) HEX: A novel homeobox gene expressed during haematopoiesis and conserved between mouse and human. Nucleic Acids Res 21: 1245–1249

    PubMed  CAS  Google Scholar 

  • Biebermann H, Schoneberg T, Krude H, Schultz G, Gudermann T, Gruters A (1997) Mutations of the human thyrotropin receptor gene causing thyroid hypoplasia and persistent congenital hypothyroidism. J Clin Endocrinol Metab 82: 3471–3480

    Article  PubMed  CAS  Google Scholar 

  • Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Gumbiner B M, Shapiro L (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296: 1308–1313

    Article  PubMed  CAS  Google Scholar 

  • Bogue CW, Ganea GR, Sturm E, Ianucci R, Jacobs HC (2000) Hex expression suggests a role in the development and function of organs derived from foregut endoderm. Dev Dyn 219: 84–89

    Article  PubMed  CAS  Google Scholar 

  • Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16: 2958–2970

    Article  PubMed  CAS  Google Scholar 

  • Breedveld GJ, Dongen JW van, Danesino C et al. (2002) Mutations in TITF-1 are associated with benign hereditary chorea. Hum Mol Genet 11: 971–979

    Article  PubMed  CAS  Google Scholar 

  • Castanet M, Park SM, Smith A et al. (2002) A novel loss-of-function mutation in TTF-2 is associated with congenital hypothyroidism, thyroid agenesis and cleft palate. Hum Mol Genet 11: 2051–2059

    Article  PubMed  CAS  Google Scholar 

  • Celli G, LaRochelle WJ, Mackem S, Sharp R, Merlino G (1998) Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 17: 1642–1655

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Huang L, Solursh M (1994) A concentration gradient of retinoids in the early Xenopus laevis embryo. Dev Biol 161: 70–76

    Article  PubMed  Google Scholar 

  • Chisaka O, Musci TS, Capecchi MR (1992) Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355: 516–520

    Article  PubMed  CAS  Google Scholar 

  • Cho KW, De Robertis EM (1990) Differential activation of Xenopus homeo box genes by mesoderm-inducing growth factors and retinoic acid. Genes Dev 4: 1910–1916

    PubMed  CAS  Google Scholar 

  • Civitareale D, Lonigro R, Sinclair AJ, Di Lauro R (1989) A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter. EMBO J 8: 2537–2542

    PubMed  CAS  Google Scholar 

  • Clifton-Bligh RJ, Wentworth JM, Heinz P et al. (1998) Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nature Genetics 19: 399–401

    Article  PubMed  CAS  Google Scholar 

  • Congdon T, Nguyen LQ, Nogueira CR, Habiby RL, Medeiros-Neto G, Kopp P (2001) A novel mutation (Q40P) in PAX8 associated with congenital hypothyroidism and thyroid hypoplasia: evidence for phenotypic variability in mother and child. J Clin Endocrinol Metab 86: 3962–3967

    Article  PubMed  CAS  Google Scholar 

  • Cordier AC, Haumont SM (1980) Development of thymus, parathyroids, and ultimo-branchial bodies in NMRI and nude mice. Am J Anat 157: 227–263

    Article  PubMed  CAS  Google Scholar 

  • Damante G, Tell G, Di Lauro R (2001) A unique combination of transcription factors controls differentiation of thyroid cells. Prog Nucleic Acid Res Mol Biol 66: 307–356

    Article  PubMed  CAS  Google Scholar 

  • Dathan N, Parlato R, Rosica A, De Felice M, and Di Lauro R (2002) Distribution of the titf2/foxel gene product is consistent with an important role in the development of foregut endoderm, palate, and hair. Dev Dyn 224: 450–456

    Article  PubMed  CAS  Google Scholar 

  • De Felice M, Di Lauro R (2004) Thyroid development and its disorders: Genetics and molecular mechanisms. Endocr Rev 25: 722–746

    Article  PubMed  CAS  Google Scholar 

  • De Felice M, Ovitt C, Biffali E et al. (1998) A mouse model for hereditary thyroid dysgenesis and cleft palate. Nature Genetics 19: 395–398

    Article  PubMed  CAS  Google Scholar 

  • Dehal P, Satou Y, Campbell RK et al. (2002) The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 298: 2157–2167

    Article  PubMed  CAS  Google Scholar 

  • De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127: 483–492

    PubMed  Google Scholar 

  • Dorfler P, Busslinger M (1996) C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8. EMBO J 15: 1971–1982

    PubMed  CAS  Google Scholar 

  • Elsalini OA, Rohr KB (2003) Phenylthiourea disrupts thyroid function in developing zebrafish. Dev Genes Evol 212:593–598

    PubMed  CAS  Google Scholar 

  • Elsalini OA, Gartzen J von, Cramer M, Rohr KR (2003) Zebrafish hhex, nk2.1a and pax2.1 regulate thyroid growth and differentiation downstream of Nodal-dependent transcription factors. Dev Biol 263: 67–80

    Article  PubMed  CAS  Google Scholar 

  • Fagman H, Grande M, Edsbagge J, Semb H, Nilsson M (2003) Expression of classical cadherins in thyroid development: Maintenance of an epithelial phenotype throughout organogenesis. Endocrinology 144: 3618–3624

    Article  PubMed  CAS  Google Scholar 

  • Fontaine J (1979) Multistep migration of calcitonin cell precursors during ontogeny of the mouse pharynx. Gen Comp Endocrinol 37: 81–92

    Article  PubMed  CAS  Google Scholar 

  • Fuhrer D, Lachmund P, Nebel IT, Paschke R (2003) The thyrotropin receptor mutation database: Update 2003. Thyroid 13: 1123–1126

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Honma Y (1969) Iodine metabolism of the endostyle of larval lampreys, Ammocoetes of Lampetra japonica. Electron microscopic autoradiography of 125-I. Z Zellforsch Mikrosk Anat 98: 525–537

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Sawano F (1979) Fine structural localization of endogeneous peroxidase in the endostyle of ascidians, Ciona intestinalis. A part of phylogenetic studies of the thyroid gland. Arch Histol Jpn 42: 319–326

    PubMed  CAS  Google Scholar 

  • Gaunt SJ (1988) Mouse homeobox gene transcripts occupy different but overlapping domains in embryonic germ layers and organs: A comparison of Hox-3.1 and Hox-1.5. Development 103: 135–144

    PubMed  CAS  Google Scholar 

  • Gaunt SJ, Krumlauf R, Duboule D (1989) Mouse homeogenes within a subfamily, Hox-1.4,-2.6 and-5.1, display similar anteroposterior domains of expression in the embryo, but show stage-and tissue-dependent differences in their regulation. Development 107: 131–141

    PubMed  CAS  Google Scholar 

  • Gruters A, Jenner A, Krude H (2002) Long-term consequences of congenital hypothyroidism in the era of screening programmes. Best Pract Res Clin Endocrinol Metab 16: 369–382

    Article  PubMed  Google Scholar 

  • Guazzi S, Price M, De Felice M, Damante G, Mattei MG, Di Lauro R (1990) Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J 9: 3631–3639

    PubMed  CAS  Google Scholar 

  • Haffter P, Granato M, Brand M et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1–36

    PubMed  CAS  Google Scholar 

  • Heller N, Brandli AW (1999) Xenopus Pax-2/5/8 orthologues: Novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages. Dev Genet 24: 208–219

    Article  PubMed  CAS  Google Scholar 

  • Ho CY, Houart C, Wilson SW, Stainier DY (1999) A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene. Curr Biol 9: 1131–1134

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ (1996) The T/ebp null mouse: Thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10: 60–69

    PubMed  CAS  Google Scholar 

  • Kimura S, Ward JM, Minoo P (1999) Thyroid-specific enhancer-binding protein/thyroid transcription factor 1 is not required for the initial specification of the thyroid and lung primordia. Biochimie 81: 321–327

    Article  PubMed  CAS  Google Scholar 

  • Kozmik Z, Holland ND, Kalousova A, Paces J, Schubert M, Holland LZ (1999) Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development 126:1295–1304

    PubMed  CAS  Google Scholar 

  • Krude H, Biebermann H, Schnabel D, Ambrugger P, Gruters A (2000) Molecular pathogenesis of neonatal hypothyroidism. Horm Res 53Suppl 1: 12–18

    Article  PubMed  CAS  Google Scholar 

  • Krude H, Schutz B, Biebermann H et al. (2002) Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest 109:475–480

    Article  PubMed  CAS  Google Scholar 

  • Lazzaro D, Price M, De Felice M, Di Lauro R (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113: 1093–1104

    PubMed  CAS  Google Scholar 

  • Le Douarin N, Fontaine J, Le Lievre C (1974) New studies on the neural crest origin of the avian ultimobranchial glandular cells — interspecific combinations and cytochemical characterization of C cells based on the uptake of biogenic amine precursors. Histochemistry 38: 297–305

    Article  PubMed  Google Scholar 

  • Liao W, Ho CY, Yan YL, Postlethwait J, Stainier DY (2000) Hhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish. Development 127: 4303–4313

    PubMed  CAS  Google Scholar 

  • Macchia PE, Lapi P, Krude H et al. (1998) PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat Genet 19: 83–86

    PubMed  CAS  Google Scholar 

  • Manley NR, Capecchi MR (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121: 1989–2003

    PubMed  CAS  Google Scholar 

  • Manley NR, Capecchi MR (1998) Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol 195: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Mansouri A, Chowdhury K, Gruss P (1998) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19: 87–90

    PubMed  CAS  Google Scholar 

  • Martinez Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D, Beddington RS (2000) The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127: 2433–2445

    PubMed  CAS  Google Scholar 

  • Min H, Danilenko DM, Scully SA et al. (1998) Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 12: 3156–3161

    PubMed  CAS  Google Scholar 

  • Minoo P, Su G, Drum H, Bringas P, Kimura S (1999) Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(-/-) mouse embryos. Dev Biol 209: 60–71

    Article  PubMed  CAS  Google Scholar 

  • Müller W (1873) Über die Hypobranchialrinne der Tunicaten und deren Vorhandensein bei Amphioxus und den Cyclostomen. Jena Z Med 7: 327–332

    Google Scholar 

  • Noden DM (1991) Vertebrate craniofacial development: The relation between ontogenetic process and morphological outcome. Brain Behav Evol 38: 190–225

    PubMed  CAS  Google Scholar 

  • Ogasawara M (2000) Overlapping expression of amphioxus homologs of the thyroid transcription factor-1 gene and thyroid peroxidase gene in the endostyle: insight into evolution of the thyroid gland. Dev Genes Evol 210: 231–242

    Article  PubMed  CAS  Google Scholar 

  • Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277: 643–649

    Article  PubMed  CAS  Google Scholar 

  • Okabe M, Graham A (2004) The origin of the parathyroid gland. Proc Natl Acad Sci USA 101: 17716–17719

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2: REVIEWS3005

    Google Scholar 

  • Osier W (1897) Sporadic cretinism. Trans Congress of American Physicians and Surgeons 4: 169–206

    Google Scholar 

  • Pabst O, Herbrand H, Takuma N, Arnold HH (2000) NKX2 gene expression in neuroectoderm but not in mesendodermally derived structures depends on sonic hedgehog in mouse embryos. Dev Genes Evol 210: 47–50

    Article  PubMed  CAS  Google Scholar 

  • Plachov D, Chowdhury K, Walther C, Simon D, Guenet JL, Gruss P (1990) Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 110: 643–651

    PubMed  CAS  Google Scholar 

  • Postiglione MP, Parlato R, Rodriguez-Mallon A et al. (2002) Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci USA 99: 15462–15467

    Article  PubMed  CAS  Google Scholar 

  • Price M, Lazzaro D, Pohl T et al. (1992) Regional expression of the homeobox gene Nkx-2.2 in the developing mammalian forebrain. Neuron 8: 241–255

    Article  PubMed  CAS  Google Scholar 

  • Revest JM, Spencer-Dene B, Kerr K, De Moerlooze L, Rosewell I, Dickson C (2001) Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev Biol 231: 47–62

    Article  PubMed  CAS  Google Scholar 

  • Rohr KB, Concha ML (2000) Expression of nk2.1a during early development of the thyroid gland in zebrafish. Mech Dev 95: 267–270

    Article  PubMed  CAS  Google Scholar 

  • Rohr KB, Barth KA, Varga ZM, Wilson SW (2001) The nodal pathway acts upstream of hedgehog signaling to specify ventral telencephalic identity. Neuron 29: 341–351

    Article  PubMed  CAS  Google Scholar 

  • Sakiyama J, Yamagishi A, Kuroiwa A (2003) Tbx4-Fgfl0 system controls lung bud formation during chicken embryonic development. Development 130: 1225–1234

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Miyamoto Y, Satou Y, Satoh N, Ogasawara M (2003) Novel endostyle-specific genes in the ascidian Ciona intestinalis. Zoolog Sci 20: 1025–1030

    Article  PubMed  CAS  Google Scholar 

  • Shimamura K, Rubenstein JL (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124: 2709–2718

    PubMed  CAS  Google Scholar 

  • Sive HL, Cheng PF (1991) Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis. Genes Dev 5: 1321–1332

    PubMed  CAS  Google Scholar 

  • Stafford D, Prince VE (2002) Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol 12: 1215–1220

    Article  PubMed  CAS  Google Scholar 

  • Sussel L, Marin O, Kimura S, Rubenstein JL (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126: 3359–3370

    PubMed  CAS  Google Scholar 

  • Suzuki K, Kobayashi Y, Katoh R, Kohn LD, Kawaoi A (1998) Identification of thyroid transcription factor-1 in C cells and parathyroid cells. Endocrinology 139: 3014–3017

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Kondo Y (1973) Thyroidal morphogenesis and biosynthesis of thyroglobulin before and after metamorphosis in the lamprey, Lampetra reissneri. Gen Comp Endocrinol 21: 451–460

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Hamada J, Murakawa K et al. (2004) Expression profiles of 39 HOX genes in normal human adult organs and anaplastic thyroid cancer cell lines by quantitative real-time RT-PCR system. Exp Cell Res 293: 144–153

    Article  PubMed  CAS  Google Scholar 

  • Thomas PQ, Brown A, Beddington RS (1998) Hex: A homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125: 85–94

    PubMed  CAS  Google Scholar 

  • Venkatesh TV, Holland ND, Holland LZ, Su MT, Bodmer R (1999) Sequence and developmental expression of amphioxus AmphiNk2-l: Insights into the evolutionary origin of the vertebrate thyroid gland and forebrain. Dev Genes Evol 209: 254–259

    Article  PubMed  CAS  Google Scholar 

  • Vilain C, Rydlewski C, Duprez L et al. (2001) Autosomal dominant transmission of congenital thyroid hypoplasia due to loss-of-function mutation of PAX8. J Clin Endocrinol Metab 86: 234–238

    Article  PubMed  CAS  Google Scholar 

  • Walker WF, Liem KF (1994) Functional Anatomy of Vertebrates. An Evolutionary Perspective. Saunders, Fort Worth

    Google Scholar 

  • Walther C, Guenet JL, Simon D et al. (1991) Pax: A murine multigene family of paired box-containing genes. Genomics 11: 424–434

    Article  PubMed  CAS  Google Scholar 

  • Wendl T, Lun K, Mione M, Favor J, Brand M, Wilson SW, Rohr KB (2002) Pax2.1 is required for the development of thyroid follicles in zebrafish. Development 129: 3751–3760

    PubMed  CAS  Google Scholar 

  • Wright GM, Filosa MF, Youson JH (1978) Immunocytochemical localization of thyroglobulin in the endostyle of the anadromous sea lamprey, Petromyzon marinus L. Am J Anat 152: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Xu PX, Zheng W, Laclef C, Maire P, Maas RL, Peters H, Xu X (2002) Eyal is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129: 3033–3044

    PubMed  CAS  Google Scholar 

  • Zannini M, Avantaggiato V, Biffali E et al. (1997) TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO J 16:3185–3197

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rohr, K., Krude, H. (2006). Transkriptionelle und parakrine Regulation der Entwicklung der Schilddrüse. In: Ganten, D., Ruckpaul, K., Köhrle, J. (eds) Molekularmedizinische Grundlagen von para- und autokrinen Regulationsstörungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28782-5_3

Download citation

Publish with us

Policies and ethics