Skip to main content

Regulation der Chondrozytendifferenzierung in der Wachstumsfuge: Parakrine Signalsysteme

  • Chapter
Molekularmedizinische Grundlagen von para- und autokrinen Regulationsstörungen

Part of the book series: Molekulare Medizin ((MOLMED))

  • 1094 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.1.6 Literatur

  • Akiyama H, Chaboissier MC, Martin JF, Schedl A, Crombrugghe de B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16: 2813–2828

    Article  PubMed  CAS  Google Scholar 

  • Akiyama H, Lyons JP, Mori-Akiyama Y et al. (2004) Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 18: 1072–1087

    Article  PubMed  CAS  Google Scholar 

  • Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126: 1611–1623

    Article  PubMed  CAS  Google Scholar 

  • Bartels CF, Bukulmez H, Padayatti P et al. (2004) Mutations in the transmembrane natriuretic peptide receptor NPRB impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet 75: 27–34

    Article  PubMed  CAS  Google Scholar 

  • Baur ST, Mai JJ, Dymecki SM (2000) Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. Development 127: 605–619

    PubMed  CAS  Google Scholar 

  • Bell DM, Leung KK, Wheatley SC et al. (1997) Sox9 directly regulates the type-II collagen gene. Nat Genet 16: 174–178

    Article  PubMed  CAS  Google Scholar 

  • Bellus GA, McIntosh I, Smith EA et al. (1995) A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet 10: 357–359

    Article  PubMed  CAS  Google Scholar 

  • Bi W, Deng JM, Zhang Z, Behringer RR, Crombrugghe B de (1999) Sox9 is required for cartilage formation. Nat Genet 22: 85–89

    Article  PubMed  CAS  Google Scholar 

  • Bienz M, Clevers H (2003) Armadillo/beta-catenin signals in the nucleus — proof beyond a reasonable doubt? Nat Cell Biol 5: 179–182

    Article  PubMed  CAS  Google Scholar 

  • Bolander ME (1992) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200: 165–170

    PubMed  CAS  Google Scholar 

  • Bridgewater LC, Lefebvre V, Crombrugghe B de (1998) Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2al tissue-specific enhancer. J Biol Chem 273: 14998–15006

    Article  PubMed  CAS  Google Scholar 

  • Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton [see comments]. Science 280: 1455–1457

    Article  PubMed  CAS  Google Scholar 

  • Capdevila J, Johnson RL (1998) Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning. Dev Biol 197: 205–217

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Adar R, Yang X et al. (1999) Gly369Cys mutation in mouse Fgfr3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 104: 1517–1525

    PubMed  CAS  Google Scholar 

  • Chen L, Li C, Qiao W, Xu X, Deng C (2001) A Ser(365) → Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 10: 457–465

    Article  PubMed  CAS  Google Scholar 

  • Chung UI, Lanske B, Lee K, Li E, Kronenberg H (1998) The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc Natl Acad Sci USA 95: 13030–13035

    Article  PubMed  CAS  Google Scholar 

  • Chusho H, Tamura N, Ogawa Y et al. (2001) Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA 98: 4016–4021

    Article  PubMed  CAS  Google Scholar 

  • Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12: 390–397

    Article  PubMed  CAS  Google Scholar 

  • Dailey L, Laplantine E, Priore R, Basilico C (2003) A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation. J Cell Biol 161: 1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84: 911–921

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation [see comments]. Cell 89: 747–754

    Article  PubMed  CAS  Google Scholar 

  • Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9: 2795–2807

    PubMed  CAS  Google Scholar 

  • Duprez D, Bell EJ, Richardson MK, Archer CW, Wolpert L, Brickell PM, Francis-West PH (1996) Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech Dev 57: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Enomoto-Iwamoto M, Iwamoto M, Mukudai Y et al. (1998) Bone morphogenetic protein signaling is required for maintenance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes. J Cell Biol 140: 409–418

    Article  PubMed  CAS  Google Scholar 

  • Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R (1995) Toward a molecular understanding of skeletal development. Cell 80: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Ferguson C, Alpern E, Miclau T, Helms JA (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87: 57–66

    Article  PubMed  CAS  Google Scholar 

  • Foster JW, Dominguez-Steglich MA, Guioli S et al. (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372: 525–530

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Guo J, She C et al. (2001) Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-l. Nat Genet 28: 386–388

    Article  PubMed  CAS  Google Scholar 

  • Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21: 90–113

    Article  PubMed  CAS  Google Scholar 

  • Gong Y, Krakow D, Marcelino J et al. (1999) Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet 21: 302–304

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Chung UI, Kondo H, Bringhurst FR, Kronenberg HM (2002) The PTH/PTHrP receptor can delay chondrocyte hypertrophy in vivo without activating phospholipase C. Dev Cell 3: 183–194

    Article  PubMed  CAS  Google Scholar 

  • Hartmann C, Tabin CJ (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127: 3141–3159

    PubMed  CAS  Google Scholar 

  • Hartmann C, Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104 341–351

    Article  PubMed  CAS  Google Scholar 

  • Hellemans J, Coucke PJ, Giedion A, De Paepe A, Kramer P, Beemer F, Mortier GR (2003) Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone-shaped epiphyses in hands and hips. Am J Hum Genet 72: 1040–1046

    Article  PubMed  Google Scholar 

  • Hinchcliffe JR, Johnson DR (1980) The development of the vertebrate limb. Oxford University Press, New York, pp 76–83

    Google Scholar 

  • Inada M, Yasui T, Nomura S et al. (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214: 279–290

    Article  PubMed  CAS  Google Scholar 

  • Iwata T, Chen L, Li C, Ovchinnikov DA, Behringer RR, Francomano CA, Deng CX (2000) A neonatal lethal mutation in Fgfr3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 9: 1603–1613

    Article  PubMed  CAS  Google Scholar 

  • Iwata T, Li CL, Deng CX, Francomano CA (2001) Highly activated Fgfr3 with the K644M mutation causes prolonged survival in severe dwarf mice. Hum Mol Genet 10: 1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Jobert AS, Zhang P, Couvineau A, Bonaventure J, Roume J, Le Merrer M, Silve C (1998) Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J Clin Invest 102: 34–40

    Article  PubMed  CAS  Google Scholar 

  • Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, Mulligan RC (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8: 277–289

    PubMed  CAS  Google Scholar 

  • Karaplis AC, He B, Nguyen MT, Young ID, Semeraro D, Ozawa H, Amizuka N (1998) Inactivating mutation in the human parathyroid hormone receptor type 1 gene in Blomstrand chondrodysplasia. Endocrinology 139:5255–5258

    Article  PubMed  CAS  Google Scholar 

  • Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, McMahon AP (2000) Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and-independent pathways. Development 127: 543–548

    PubMed  CAS  Google Scholar 

  • Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2: 389–406

    Article  PubMed  CAS  Google Scholar 

  • Kim IS, Otto F, Zabel B, Mundlos S (1999) Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 80: 159–170

    Article  PubMed  CAS  Google Scholar 

  • King JA, Marker PC, Seung KJ, Kingsley DM (1994) BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166: 112–122

    Article  PubMed  CAS  Google Scholar 

  • Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, Jenkins NA (1992) The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell 71: 399–410

    Article  PubMed  CAS  Google Scholar 

  • Komori T, Yagi H, Nomura S et al. (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts [see comments]. Cell 89: 755–764

    Article  PubMed  CAS  Google Scholar 

  • Lanske B, Karaplis AC, Lee K et al. (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth [see comments]. Science 273: 663–666

    PubMed  CAS  Google Scholar 

  • Lefebvre V, Huang W, Harley VR, Goodfellow PN, Crombrugghe B de (1997) Sox9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17: 2336–2346

    PubMed  CAS  Google Scholar 

  • Lefebvre V, Li P, Crombrugghe B de (1998) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. Embo J 17: 5718–5733

    Article  PubMed  CAS  Google Scholar 

  • Li C, Chen L, Iwata T, Kitagawa M, Fu XY, Deng CX (1999) A Lys644Glu substitution in fibroblast growth factor receptor 3 (Fgfr3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet 8: 35–44

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Xu J, Colvin JS, Ornitz DM (2002) Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 16: 859–869

    Article  PubMed  CAS  Google Scholar 

  • Long F, Zhang XM, Karp S, Yang Y, McMahon AP (2001) Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 128: 5099–5108

    PubMed  CAS  Google Scholar 

  • Long F, Chung UI, Ohba S, McMahon J, Kronenberg HM, McMahon AP (2004) Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development 131: 1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and routers. Science 304: 1755–1759

    Article  PubMed  CAS  Google Scholar 

  • Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1: 169–178

    Article  PubMed  CAS  Google Scholar 

  • McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53: 1–114

    PubMed  CAS  Google Scholar 

  • Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, Vortkamp A (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128: 4523–4534

    PubMed  CAS  Google Scholar 

  • Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A (2002) Interaction of FGF, Ihh/PTHrP, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3: 439–449

    Article  PubMed  CAS  Google Scholar 

  • Minina E, Schneider S, Rosowski M, Lauster R, Vortkamp A (2005) Expression of Fgf and Tgfbeta signaling related genes during embryonic endochondral ossification. Gene Expr Patterns 6(1): 102–109 (Epub ahead of print)

    Article  PubMed  CAS  Google Scholar 

  • Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5: 691–701

    Article  PubMed  CAS  Google Scholar 

  • Mundlos S, Otto F, Mundlos C et al. (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia [see comments]. Cell 89: 773–779

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Balmes G, McKinney S, Zhang Z, Givol D, Crombrugghe B de (2004) Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev 18: 290–305

    Article  PubMed  CAS  Google Scholar 

  • Naski MC, Wang Q, Xu J, Ornitz DM (1996) Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 13: 233–237

    Article  PubMed  CAS  Google Scholar 

  • Naski MC, Colvin JS, Coffin JD, Ornitz DM (1998) Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125: 4977–4988

    PubMed  CAS  Google Scholar 

  • Ng LJ, Wheatley S, Muscat GE et al. (1997) Sox9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183: 108–121

    Article  PubMed  CAS  Google Scholar 

  • Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, Takada S (2002) FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 16: 870–879

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM, Marie PJ (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16: 1446–1465

    Article  PubMed  CAS  Google Scholar 

  • Otto F, Thornell AP, Crompton T et al. (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development [see comments]. Cell 89: 765–771

    Article  PubMed  CAS  Google Scholar 

  • Pandur P, Maurus D, Kuhl M (2002) Increasingly complex: new players enter the Wnt signaling network. Bioessays 24: 881–884

    Article  PubMed  CAS  Google Scholar 

  • Pathi S, Rutenberg JB, Johnson RL, Vortkamp A (1999) Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol 209: 239–253

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A, Aszodi A, Seidler U, Ruth P, Hofmann F, Fassler R (1996) Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274: 2082–2086

    Article  PubMed  CAS  Google Scholar 

  • Pizette S, Niswander L (2000) BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol 219: 237–249

    Article  PubMed  CAS  Google Scholar 

  • Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, Munnich A (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371: 252–254

    Article  PubMed  CAS  Google Scholar 

  • Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C (1999) FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev 13: 1361–1366

    PubMed  CAS  Google Scholar 

  • Sahni M, Raz R, Coffin JD, Levy D, Basilico C (2001) STAT1 mediates the increased apoptosis and reduced chondrocyte proliferation in mice overexpressing FGF2. Development 128: 2119–2129

    PubMed  CAS  Google Scholar 

  • Sandberg MM, Aro HT, Vuorio EI (1993) Gene expression during bone repair. Clin Orthop 292–312

    Google Scholar 

  • Schipani E, Kruse K, Juppner H (1995) A constitutively active mutant PTH-PTHrP receptor in Jansen-type meta-physeal chondrodysplasia. Science 268: 98–100

    PubMed  CAS  Google Scholar 

  • Schipani E, Lanske B, Hunzelman J et al. (1997) Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc Natl Acad Sci USA 94: 13689–13694

    Article  PubMed  CAS  Google Scholar 

  • Segev O, Chumakov I, Nevo Z et al. (2000) Restrained chondrocyte proliferation and maturation with abnormal growth plate vascularization and ossification in human Fgfr-3(G380R) transgenic mice. Hum 9: 249–258

    CAS  Google Scholar 

  • Sekiya I, Tsuji K, Koopman P et al. (2000) Sox9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem 275: 10738–10744

    Article  PubMed  CAS  Google Scholar 

  • Shiang R, Thompson LM, Zhu YZ et al. (1994) Mutations in the transmembrane domain of Fgfr3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78: 335–342

    Article  PubMed  CAS  Google Scholar 

  • Smits P, Li P, Mandel J et al. (2001) The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell 1: 277–290

    Article  PubMed  CAS  Google Scholar 

  • St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation [erratum in Genes Dev (1999) 13(19): 2617]. Genes Dev 13: 2072–2086

    PubMed  CAS  Google Scholar 

  • Suda M, Ogawa Y, Tanaka K et al. (1998) Skeletal overgrowth in transgenic mice that overexpress brain natriuretic peptide. Proc Natl Acad Sci USA 95: 2337–2342

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G (2001) Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 15: 467–481

    Article  PubMed  CAS  Google Scholar 

  • Tavormina PL, Shiang R, Thompson LM et al. (1995) Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet 9: 321–328

    Article  PubMed  CAS  Google Scholar 

  • Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP (1996) A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet 12: 315–317

    Article  PubMed  CAS  Google Scholar 

  • Thomas JT, Kilpatrick MW, Lin K et al. (1997) Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 17: 58–64

    Article  PubMed  CAS  Google Scholar 

  • Ueta C, Iwamoto M, Kanatani N et al. (2001) Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J Cell Biol 153: 87–100

    Article  PubMed  CAS  Google Scholar 

  • Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein [see comments]. Science 273: 613–622

    PubMed  CAS  Google Scholar 

  • Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ (1998) Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev 71: 65–76

    Article  PubMed  CAS  Google Scholar 

  • Wagner T, Wirth J, Meyer J et al. (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene Sox9. Cell 79: 1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Green RP, Zhao G, Ornitz DM (2001) Differential regulation of endochondral bone growth and joint development by Fgfr1 and Fgfr3 tyrosine kinase domains. Development 128: 3867–3876

    PubMed  CAS  Google Scholar 

  • Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus A E. (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 93: 10240–10245

    Article  PubMed  CAS  Google Scholar 

  • Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9: 2105–2116

    PubMed  CAS  Google Scholar 

  • Wozney JM (1992) The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 32: 160–167

    Article  PubMed  CAS  Google Scholar 

  • Yang Y (2003) Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis. Birth Defects Res Part C Embryo Today 69: 305–317

    Article  CAS  Google Scholar 

  • Yang Y, Topol L, Lee H, Wu J (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130: 1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Yasoda A, Ogawa Y, Suda M et al. (1998) Natriuretic peptide regulation of endochondral ossification. Evidence for possible roles of the C-type natriuretic peptide/guanylyl cyclase-B pathway. J Biol Chem 273: 11695–11700

    Article  PubMed  CAS  Google Scholar 

  • Yasoda A, Komatsu Y, Chusho H et al. (2004) Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 10: 80–86

    Article  PubMed  CAS  Google Scholar 

  • Yi SE, Daluiski A, Pederson R, Rosen V, Lyons KM (2000) The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127: 621–630

    PubMed  CAS  Google Scholar 

  • Yoshida CA, Yamamoto H, Fujita T et al. (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 18: 952–963

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Xu J, Liu Z et al. (2003) Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 130: 3063–3074

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Schwarz EM, Rosier RN, Zuscik MJ, Puzas JE, O’Keefe RJ (2003) ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development. J Bone Miner Res 18: 1593–1604

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122: 2977–2986

    PubMed  CAS  Google Scholar 

  • Zhao Q, Eberspaecher H, Lefebvre V et al. (1997) Parallel expression of Sox9 and Col2al in cells undergoing chondrogenesis. Sox9 directly regulates the type-II collagen gene. Sox9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Dyn 209: 377–386

    Article  PubMed  CAS  Google Scholar 

  • Zou H, Wieser R, Massague J, Niswander L (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev 11: 2191–2203

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vortkamp, A. (2006). Regulation der Chondrozytendifferenzierung in der Wachstumsfuge: Parakrine Signalsysteme. In: Ganten, D., Ruckpaul, K., Köhrle, J. (eds) Molekularmedizinische Grundlagen von para- und autokrinen Regulationsstörungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28782-5_20

Download citation

Publish with us

Policies and ethics