Skip to main content

In Situ Photo-Polymerisation and Polymerisation-Shrinkage Phenomena

  • Chapter

Abstract

Photo-polymerisation is now a widely accepted initiation mode for the clinical hardening processes required with a wide range of biomaterials including dental adhesives and restoratives. As we discuss in detail, there is a strong relationship between the progressive phenomenon of photo-polymerisation, with attendant network formation, and shrinkage stresses and strains set up in the material and its host environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Watts DC, Al Hindi A. Intrinsic “soft-start” polymerisation shrinkage-kinetics in an acrylate-based resin-composite. Dent Mater 1999; 15:39–45

    PubMed  Google Scholar 

  2. Versluis A, Douglas WH, Cross M, Sakaguchi RL. Does an incremental filling technique reduce polymerization shrinkage stresses? J Dent Res 1996; 75:871–878

    PubMed  Google Scholar 

  3. Silikas N, Eliades G, Watts DC. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater 2000; 16:292–296

    PubMed  Google Scholar 

  4. Sakaguchi R, Berge H. Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. J Dent 1998; 26:695–700

    PubMed  Google Scholar 

  5. Pananakis D, Watts DC. Incorporation of the heating effect of the light source in a nonisothermal model of a visible-light-cured resin composite. J Mater Sci 2000; 35:4589–4600

    Google Scholar 

  6. Labella R, Lambrechts P, Van Meerbeek B, Vanherle G. Polymerisation shrinkage and elasticity of flowable composites and filled adhesives. Dent Mater 1999; 15:128–137

    PubMed  Google Scholar 

  7. Davidson CL, Feilzer AJ. Polymerisation shrinkage and polymerisation shrinkage stress in polymer-based restoratives. J Dent 1997; 25:435–440

    PubMed  Google Scholar 

  8. Kinomoto Y, Torii M, Takeshige F, Ebisu S. Comparison of polymerization contraction stresses between self-and light-curing composites. J Dent Res 1999; 27:383–389

    Google Scholar 

  9. Hegdahl T, Gjerdet NR. Contraction stresses of composite resin filling materials. Acta Odont Scand 1977; 35:191–195

    PubMed  Google Scholar 

  10. Condon JR, Ferracane JL. Reduction of composite contraction stress through non-bonded microfiller particles. Dent Mater 1998; 14:256–260

    PubMed  Google Scholar 

  11. Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH. A review of polymerisation contraction: the influence of stress development versus stress relief. Oper Dent 1996; 21:17–24

    PubMed  Google Scholar 

  12. Bouchlicher MR, Vargas MA, Boyer DB. Effect of composite type, light intensity, configuration factor and laser polymerisation on polymerisation contraction forces. Am J Dent 1997; 10:88–96

    Google Scholar 

  13. Eick JD, Welch FW. Polymerisation shrinkage of posterior composite resins and its possible influence on postoperative sensitivity. Quintessence Int 1986; 17:103–111

    PubMed  Google Scholar 

  14. Stansbury JW. Cyclopolymerisable monomers for use in dental resin composites. J Dent Res 1990; 69:844–848

    PubMed  Google Scholar 

  15. Sakaguchi RL, Ferracane JL. Stress transfer from polymerization shrinkage of a chemical-cured composite bonded to a pre-cast composite substrate. Dent Mater 1998; 14:106–111

    PubMed  Google Scholar 

  16. Feilzer AJ, Dooren LH, de Gee AJ, Davidson CL. Influence of light intensity on polymerization shrinkage and integrity of restoration-cavity interface. Eur J Oral Sci 1995; 103:322–326

    PubMed  Google Scholar 

  17. Sakaguchi R, Brust E, Cross M, DeLong R, Douglas W. Independent movement of cusps during occlusal loading. Dent Mater 1991; 7:186–190

    PubMed  Google Scholar 

  18. Tantbirojn D, Versluis A, Pintado M, DeLong R, Douglas W. Tooth deformation patterns in molars after composite restoration. Dent Mater 2004; 20:535–542

    PubMed  Google Scholar 

  19. Morin DL, Douglas WH, Cross M. Biophysical stress analysis of restored teeth: experimental strain measurement. Dent Mater 1988; 4:41–48

    PubMed  Google Scholar 

  20. Opdam N, Roeters F, Feilzer A, Verdonschot E. Marginal integrity and postoperative sensitivity in class 2 resin composite restorations in vivo. J Dent 1998; 26:555–562

    PubMed  Google Scholar 

  21. Lopes G, Baratieri L, Monteiro SJ, Vieira L. Effect of posterior resin composite placement technique on the resin-dentin interface formed in vivo. Quintessence Int 2004; 35:156–161

    PubMed  Google Scholar 

  22. Althof O, Hartung M. Advances in light curing. Am J Dent 2000; 13:77D–81D

    Google Scholar 

  23. Hofmann N, Hugo B, Schubert K, Klaiber B. Comparison between a plasma arc light source and conventional halogen curing units regarding flexural strength, modulus, and hardness of photoactivated resin composites. Clin Oral Investig 2000; 4:140–147

    PubMed  Google Scholar 

  24. Peutzfeldt A, Sahafi A, Asmussen E. Characterization of resin composites polymerized with plasma arc curing units. Dent Mater 2000; 16:330–336

    PubMed  Google Scholar 

  25. Blankenau R, Erickson R, Rueggeberg F. New light curing options for composite resin restorations. Compend Contin Educ Dent 1999; 20:122–125

    PubMed  Google Scholar 

  26. Bennett A, Watts D. Performance of two blue light-emitting-diode dental light curing units with distance and irradiation time. Dent Mater 2004; 20:72–79

    PubMed  Google Scholar 

  27. Smith F. Optics and photonics, an introduction. Wiley, New York, 2000

    Google Scholar 

  28. Mills RW. Blue light emitting diodes: another method of light curing? Br Dent J 1995; 178:169

    Google Scholar 

  29. Jandt K, Blackwell G, Ashworth S. Depth of cure and compressive strength of dental composite cured with blue light emitting diodes (LEDs). Dent Mater 2000; 16:41–44

    PubMed  Google Scholar 

  30. Yap A, Soh M, Siow K. Post-gel shrinkage with pulse activation and soft-start polymerization. Oper Dent 2002; 27:81–87

    PubMed  Google Scholar 

  31. Soh M, Yap A. Influence of curing modes on crosslink density in polymer structures. J Dent 2004; 32:321–326

    PubMed  Google Scholar 

  32. Hofmann N, Denner W, Hugo B, Klaiber B. The influence of plasma arc vs halogen standard or soft-start irradiation on polymerization shrinkage kinetics of polymer matrix composites. J Dent 2003; 31:383–393

    PubMed  Google Scholar 

  33. Hofmann N, Markert T, Hugo B, Klaiber B. Effect of high intensity vs soft-start halogen irradiation on light-cured resin-based composites. Part I. Temperature rise and polymerization shrinkage. Am J Dent 2003; 16:421–430

    PubMed  Google Scholar 

  34. Hofmann N, Markert T, Hugo B, Klaiber B. Effect of high intensity vs soft-start halogen irradiation on light-cured resin-based composites. Part II. Hardness and solubility. Am J Dent 2004; 17:38–42

    PubMed  Google Scholar 

  35. Bouschlicher M, Rueggeberg F. Effect of ramped light intensity on polymerization force and conversion in a photoactivated composite. J Esthet Dent 2000; 12:328–339

    PubMed  Google Scholar 

  36. De Lange C, Bausch J, Davidson C. The curing pattern of photo-initiated dental composites. J Oral Rehab 1980; 7:369–377

    Google Scholar 

  37. Watts D, Amer O, Combe E. Characteristics of visible light-cured composite systems. Br Dent J 1984; 156:209–215

    PubMed  Google Scholar 

  38. Ruyter IF. Methacrylate-based polymeric dental materials: conversion and related properties. Summary and review. Acta Odontol Scand 1982; 40:359–376

    PubMed  Google Scholar 

  39. Rueggeberg F, Craig R. Correlation of parameters used to estimate monomer conversion in a light-cured composite. J Dent Res 1988; 67:932–937

    PubMed  Google Scholar 

  40. Ferracane J. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater 1985; 1:11–14

    PubMed  Google Scholar 

  41. DeWald J, Ferracane J. A comparison of four modes of evaluating depth of cure of light-activated composites. J Dent Res 1987; 66:727–730

    PubMed  Google Scholar 

  42. Cook WD, Standish P. Cure of resin-based restorative materials. II. White light photo-polymerised resins. Aust Dent J 1983; 28:307–311

    PubMed  Google Scholar 

  43. Miyagawa Y, Powers J. Prediction of color of an esthetic restorative material. J Dent Res 1983; 62:581

    PubMed  Google Scholar 

  44. Van Krevelen D. Properties of polymers. Elsevier, Amsterdam, 1976

    Google Scholar 

  45. Kubelka P, Munk F. A contribution to the optics of pigments. Z Technol Phys 1931; 12:593

    Google Scholar 

  46. Miyagawa Y, Powers J, O’Brian W. Optical properties of direct restorative materials. J Dent Res 1981; 60:890

    PubMed  Google Scholar 

  47. Cook W, McAree D. Optical properties of esthetic restorative materials and natural dentition. J Biomed Mater Res 1985; 19:469

    PubMed  Google Scholar 

  48. Taira M, Yamaki M. Studies on optical properties of a visible-light-cured dental composite resin by diffuse reflectance measurements. J Mater Sci Lett 1995; 14:198

    Google Scholar 

  49. Wozniak W, Siew E, Lim J, McGill S, Sabri Z, Moser J. Color mixing in dental porcelain. Dent Mater 1993; 9:229

    PubMed  Google Scholar 

  50. Lee Y, Powers J. Color and optical properties of resin-based composites for bleached teeth after polymerization and accelerated aging. Am J Dent 2001; 14:349–354

    PubMed  Google Scholar 

  51. McCabe J, Carrick T. Output from visible-light activation units and depth of cure of light-activated composites. J Dent Res 1989; 68:1534–1539

    PubMed  Google Scholar 

  52. Suzuki H, Taira M, Wakasa K, Yamaki M. Refractive-index-adjustable fillers for visible-light-cured dental resin composites: preparation of TiO2-SiO2 glass powder by the sol-gel process. J Dent Res 1991; 70:883

    PubMed  Google Scholar 

  53. Moad G, Chiefari J, Mayadunne R et al. Initiating free radical polymerization. Macromol Sympos 2002; 182:65–80

    Google Scholar 

  54. Dart E, Nemcek J. British Patent 1975:1 408 265

    Google Scholar 

  55. Taira M, Urabe H, Hirose T, Wakasa K, Yamaki M. Analysis of photo initiators in visible light-cured dental composite resins. J Dent Res 1988; 67:24–28

    PubMed  Google Scholar 

  56. Tsai L, Charney E. The triplet states of a-Dicarbonyls. J Phys Chem 1969; 73:2462–2463

    PubMed  Google Scholar 

  57. Stansbury J. Curing dental resins and composites by photopolymerization. J Esthet Dent 2000; 12:300–308

    PubMed  Google Scholar 

  58. Peutzfeldt A, Asmussen E. Effect of propanal and diacetyl on quantity of remaining double bonds of chemically cured BisGMA/TEGDMA resins. Eur J Oral Sci 1996; 104:309–312

    PubMed  Google Scholar 

  59. Peutzfeldt A, Asmussen E. In vitro wear, hardness, and conversion of diacetyl-containing and propanal-containing resin materials. Dent Mater 1996; 12:103–108

    PubMed  Google Scholar 

  60. Chae K-H, Sun G-J. Phenylpropanedione; a new visible light photosensitizer for dental composite resin with higher efficiency than camphorquinone. Bull Korean Chem Soc 1998; 19:152–154

    Google Scholar 

  61. Sun G, Chae K. Properties of 2,3-butanedione and 1-phenyl-1,2-propanedione as new photosensitizers for visible light cured dental resin composites. Polymer 2000; 41:6205–6212

    Google Scholar 

  62. Park Y-J, Chaec K-H, Rawlsa HR. Development of a new photoinitiation system for dental light-cure composite resins. Dent Mater 1999; 15:120–127

    PubMed  Google Scholar 

  63. Ferracane J, Greener E. Fourier transform infrared analysis of degree of polymerization in unfilled resins: methods comparison. J Dent Res 1984; 63:1093–1095

    PubMed  Google Scholar 

  64. Ferracane JL, Greener EH. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomed Mater Res 1986; 20:121–131

    PubMed  Google Scholar 

  65. Eliades GG, Vougiouklakis GJ, Caputo AA. Degree of double bond conversion in light-cured composites. Dent Mater 1987; 3:19–25

    PubMed  Google Scholar 

  66. Ruyter I, Oysaed H. Analysis and characterization of dental polymers. Crit Rev Biocompat 1988; 4:247–279

    Google Scholar 

  67. Cox C, Keall C, Keall H, Ostro E, Bergenholtz G. Biocompatibility of surface-sealed dental materials against exposed pulps. J Prosth Dent 1987; 57:1–8

    Google Scholar 

  68. Vankerckhoven H, Lambrechts P, Van Beylen M, Vanherle G. Unreacted methacrylate groups on the surfaces of composite resins. J Dent Res 1982; 61:791–795

    PubMed  Google Scholar 

  69. Ruyter IE, Svendsen S. Remaining methacrylate groups in composite restorative materials. Acta Odontol Scand 1978; 36:75–82

    PubMed  Google Scholar 

  70. Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand Dent Res 1982; 90:490–496

    Google Scholar 

  71. Maffezzoli A, Terzi R. Thermal analysis of visible-light-activated dental composites. Thermochim Acta 1995; 269/270:319–335

    Google Scholar 

  72. Ferracane JL. In vitro evaluation of resin composites. Structure-property relationships. Development of assessment criteria. Trans Acad Dent Mater 1989; 2:6–35

    Google Scholar 

  73. Scherzer T. Real-time FTIR-ATR spectroscopy of photopolymerization reactions. Macromol Sympos 2002; 184:79–97

    Google Scholar 

  74. Oréfice R, Disacciati J, Neves A, Mansur H, Jansen W. In situ evaluation of the polymerization kinetics and corresponding evolution of the mechanical properties of dental composites. Polymer Testing 2003; 22:77–81

    Google Scholar 

  75. Stansbury J, Dickens S. Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent Mater 2001; 17:71–79

    PubMed  Google Scholar 

  76. Louden J, Roberts T. Cure profiles of light-cured dental composites by Raman spectroscopy. J Ram Spec 1983; 14:365–366

    Google Scholar 

  77. Pianelli C, Devaux J, Bebelman S, Leloup G. The micro-raman spectroscopy, a useful tool to determine the degree of conversion of light-activated composite resins. J Biomed Mater Res (Appl Biomater) 1999; 48:675–681

    Google Scholar 

  78. Emami N, Soderholm K-JM, Berglund L. Effect of light power density variations on bulk curing properties of dental composites. J Dent 2003; 31:189–196

    PubMed  Google Scholar 

  79. Tsuda H, Arends J. Raman spectroscopy in dental research: a short review of recent studies. Adv Dent Res 1997; 11:539–547

    PubMed  Google Scholar 

  80. Miyazaki M, Onose H, Moore B. Analysis of the dentin-resin interface by use of laser Raman spectroscopy. Dent Mater 2002; 18:576–580

    PubMed  Google Scholar 

  81. Heatley F, Pratsitsilp Y, McHugh N, Watts D, Devlin H. Determination of extent of reaction in dimethacrylate-based dental composites using solid-state 13C m.a.s. n.m.r. spectroscopy and comparison with FTi.r. spectroscopy. Polymer 1995; 36:1859–1867

    Google Scholar 

  82. Pereira S, Nunes T, Kalachandra S. Low viscosity dimethacrylate comonomer compositions [Bis-GMA and CH3Bis-GMA] for novel dental composites; analysis of the network by strayfield MRI, solid-state NMR and DSC & FTIR. Biomaterials 2002; 23:3799–3806

    PubMed  Google Scholar 

  83. Teshima W, Nomura Y, Tanaka N, Urabe H, Okazaki M, Nahara Y. ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes. Biomaterials 2003; 24:2097–2103

    PubMed  Google Scholar 

  84. Anseth KS, Anderson KJ, Bowman CN. Radical concentrations, environments, and reactivities during crosslinking polymerizations. Macromol Chem Phys 1996; 197:833–848

    Google Scholar 

  85. Mizuta Y, Morishita N, Kuwata K. Propagating radicals in photo-initiated polymerization as detected by time-resolved CW-and FT-ESR spectroscopy. Chem Lett 1999:311–312

    Google Scholar 

  86. Selli E, Oliva C, Galbiati M, Bellobono I. EPR investigation of radical formation and decay in photopolymerization of difunctional monomers. J Chem Soc Perkin Trans 1992; 2:1391–1395

    Google Scholar 

  87. Jancar J, Wang W, Benedetto A di. On the heterogeneous structure of thermally cured bis-GMA/TEGDMA resins. J Mater Sci Mater Med 2000; 11:675–682

    PubMed  Google Scholar 

  88. Leung RL, Fan PL, Jonston WM. Post-irradiation polymerization of visible light-activated composite resin. J Dent Res 1983; 62:363–365

    Google Scholar 

  89. Hansen EK. After polymerization of visible light-activated resins: surface hardness vs light source. Scan J Dent Res 1983; 91:406–410

    Google Scholar 

  90. Watts DC, McNaughton V, Grant AA. The development of surface hardness in visible light-cured posterior composites. J Dent 1986; 14:169–174

    PubMed  Google Scholar 

  91. Johnson WM, Leung RL, Fan PL. A mathematical model for post-irradiation hardening of photo-activated composite resins. Dent Mater 1985; 1:191–194

    Google Scholar 

  92. Braem M, Lambrechts P, VanHerle G, Davidson CL. Stiffness increase during the setting of dental composite resins. J Dent Res 1987; 66:1713–1716

    PubMed  Google Scholar 

  93. Odén A, Ruyter IE, Øsaed H. Creep and recovery of composites for use in posterior teeth during static and dynamic compression. Dent Mater 1988; 3:147–150

    Google Scholar 

  94. Oster G, Yang N. Photopolymerisation of vinyl monomers. Chem Rev 1968; 68:125–151

    Google Scholar 

  95. Odian GG. Principles of polymerization. Wiley, New York, 1981

    Google Scholar 

  96. Cook WD. Photopolymerization kinetics of dimethacrylates using the camphorquinone amine initiator system. Polymer 1992; 33:600–609

    Google Scholar 

  97. Burns W, Dainton F. Two factors affecting the use of the rotating sector in photochemical experiments. Trans Faraday Soc 1950; 46:411

    Google Scholar 

  98. Watts DC. Kinetic mechanisms of visible-light-cured resins and resin composites. In: Proc Setting Mechanisms of Dental Materials. Cameron House, Loch Lomond, Scotland, 1992, pp 1–26

    Google Scholar 

  99. Watts DC, Cash AJ. Kinetic measurements of photo-polymerisation contraction in resins and composites. Meas Sci Technol 1991; 2:788–794

    Google Scholar 

  100. Watts DC, Cash AJ. Determination of polymerization kinetics in visible-light cured materials: methods development. Dent Mater 1991; 7:281–287

    PubMed  Google Scholar 

  101. Andrzejewska E. Photopolymerization kinetics of multifunctional monomers. 2001; 26:605–665

    Google Scholar 

  102. Davidson CL. Conflicting interests with posterior use of composite materials. In: Vanherle G, Smith DC, eds. Posterior composite resin dental restorative materials. Peter Szulc, Amsterdam, 1985, pp 61–65

    Google Scholar 

  103. Davidson CL, de Gee AJ. Relaxation of polymerisation contraction stresses by flow in dental composites. J Dent Res 1984; 63:146–148

    PubMed  Google Scholar 

  104. Suliman AA, Boyer DR, Lakes RS. Polymerisation shrinkage of composite resins: comparison with tooth deformation. J Pros Dent 1994; 71:7–12

    Google Scholar 

  105. Dauvillier B, Aarnts M, Feilzer A. Developments in shrinkage control of adhesive restoratives. J Esthet Dent 2000; 12:291–299

    PubMed  Google Scholar 

  106. Feilzer AJ, De Gee AJ, Davidson CL. Curing contraction of composites and glass-ionomer cements. J Pros Dent 1988; 59:297–300

    Google Scholar 

  107. Miyazaki M, Hinoura K, Onose H, Moore BK. Effect of filler content of light-cured composites on bond strength to bovine dentine. J Dent Res 1991; 19:301–303

    Google Scholar 

  108. Culbertson BM, Wan QC, Tong YH. Preparation and evaluation of visible light-cured multi-methacrylates for dental composites. J Macromol Sci Pure Appl Chem A 1997; 34:2405–2421

    Google Scholar 

  109. Davy KW, Kalachandra S, Pandain MS, Braden M. Relationship between composite matrix molecular structure and properties. Biomaterials 1998; 19:2007–2014

    PubMed  Google Scholar 

  110. Feilzer A, de Gee A, Davidson C. Setting stress in composite resin in relation to configuration of the restoration. J Dent Res 1987; 66:1636–1639

    PubMed  Google Scholar 

  111. Feilzer AJ, De Gee AJ, Davidson CL. Quantitative determination of stress reduction by flow in composite resin restorations. Dent Mater 1990; 6:167–171

    PubMed  Google Scholar 

  112. Choi KK, Condon JR, Ferracane JL. The effects of adhesive thickness on polymerisation contraction stress of composite. J Dent Res 2000; 79:812–817

    PubMed  Google Scholar 

  113. Chen H, Manhart J, Kunzelmann K-H, Hickel R. Polymerization contraction stress in light-cured compomer restorative materials. Dent Mater 2003; 19:597–602

    PubMed  Google Scholar 

  114. Armstrong S, Keller J, Boyer D. The influence of water storage and C-factor on the dentin-resin composite microtensile bond strength and debond pathway utilizing a filled and unfilled adhesive resin. Dent Mater 2001; 17:268–276

    PubMed  Google Scholar 

  115. Bouillaguet S, Ciucchi B, Jacoby T, Wataha J, Pashley D. Bonding characteristics to dentin walls of class II cavities, in vitro. Dent Mater 2001; 17:316–321

    PubMed  Google Scholar 

  116. Loguercio A, Reisa A, Ballester R. Polymerization shrinkage: effects of constraint and filling technique in composite restorations. Dent Mater 2004; 20:236–243

    PubMed  Google Scholar 

  117. Prati C, Nucci C, Davidson CL, Montanari G. Early marginal leakage and shear bond strength of adhesive restorative systems. Dent Mater 1990; 6:195–200

    PubMed  Google Scholar 

  118. Retief DH, O’Brien JA, Smith LA, Marchman JL. In vitro investigation and evaluation of dentin bonding agents. Am J Dent 1988; 1:176–183

    PubMed  Google Scholar 

  119. Bandyopadhyay S. A study of the volumetric setting shrinkage of some dental materials. J Biomed Mater Res 1982; 16:135–144

    PubMed  Google Scholar 

  120. Venhoven BAM, de Gee AJ, Davidson CL. Polymerization contraction and conversion of light-curing bisGMA-based methacrylate resins. Biomaterials 1993; 14:871–875

    PubMed  Google Scholar 

  121. de Boer J, Visser R, Melis G. Time-resolved determination of volume shrinkage and refractive index change of volume shrinkage and refractive index change of thin polymer films during photopolymerization. Polymer 1992; 33:1123–1126

    Google Scholar 

  122. Ensaff H, O’Docherty D, Jacobsen P. Polymerization shrinkage of dental composite resins. Proc Inst Mech Engrs 2001; 215:367–375

    Google Scholar 

  123. Shlesinger MF. Williams-Watts dielectric relaxation: a fractal time stochastic process. J Stat Phys 1984; 36:639–648

    Google Scholar 

  124. Williams G, Watts DC. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 1970; 66:80–85

    Google Scholar 

  125. Braga R, Ferracane J. Contraction stress related to degree of conversion and reaction kinetics. J Dent Res 2002; 81:114–118

    PubMed  Google Scholar 

  126. Loshaek S, Fox T. Cross-linked polymers. I. Factors influencing the efficiency of cross-linking in copolymers of methyl methacylate and glycol dimethacrylate. J Am Chem Soc 1953; 75:3544–3550

    Google Scholar 

  127. Patel MP, Braden M, Davy KWM. Polymerisation shrinkage of methacrylate esters. Biomaterials 1987; 8:53–56

    PubMed  Google Scholar 

  128. Gilbert J, Hasenwinkel J, Wixson R, Lautenschlager E. A theoretical and experimental analysis of polymerization shrinkage of bone cement: a potential major source of porosity. J Biomed Mater Res 2000; 52:210–218

    PubMed  Google Scholar 

  129. Rose E, Lal J, Green R. Effects of peroxide, amine and hydroquinone in varying concentrations on the polymerization rate of polymethyl methacrylate slurries. J Am Dent Assoc 1958; 56:375–381

    PubMed  Google Scholar 

  130. Castille YP. Physical properties of monomers. The polymer handbook, 1st edn. In: Brandrup J, Immergut E, McDowell W, eds. Wiley, New York, 1975, section VIII-16

    Google Scholar 

  131. Silikas N, Al-Kheraif A, Watts DC. Influence of P/L ratio and peroxide/amine concentrations on shrinkage-strain kinetics during setting of PMMA/MMA biomaterial formulations. Biomaterials 2005; 26:197–204

    PubMed  Google Scholar 

  132. Asmussen E, Peutzfeldt A. Influence of pulse-delay curing on softening of polymer structures. J Dent Res 2001; 80:1570–1573

    PubMed  Google Scholar 

  133. Watts DC, Marouf AS, El Hejazi A, Al Hindi A, Ibrahim A. Evolution of shrinkage and expansion stresses in dental resin composites. Proc Soc Exper Mech 2001:96–98

    Google Scholar 

  134. Watts DC, Marouf AS, Al Hindi AM. Photo-polymerization shrinkage-stress kinetics in resin-composites at standardized compliance: methods development. Dent Mater 2002; 18

    Google Scholar 

  135. Thompson VP, Williams EF, Bailey WJ. Dental resins with reduced shrinkage during hardening. J Dent Res 1979; 58:1522–1532

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Watts, D., Silikas, N. (2005). In Situ Photo-Polymerisation and Polymerisation-Shrinkage Phenomena. In: Eliades, G., Watts, D., Eliades, T. (eds) Dental Hard Tissues and Bonding. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28559-8_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-28559-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23408-1

  • Online ISBN: 978-3-540-28559-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics