Skip to main content

OPTILAS: Numerical Optimization as a Key Tool for the Improvement of Advanced Multi-Beam Laser Welding Techniques

  • Conference paper
Book cover High Performance Computing in Science and Engineering, Garching 2004

Abstract

Multi-beam laser welding is an advanced welding technique which can successfully prevent hot cracking, cf. [3], [4]. In order to guarantee that this technique prevents the initiation of hot cracks in the solid-liquid region, it is important to choose the positions, sizes, and powers of the additional heat sources suitably, e.g. optimally if an appropriate objective function can be established. In case of inappropriate choices for these parameters, hot cracking can even be enhanced. Until now these quantities are generally chosen by trial and error. This paper aims towards the simulation and optimization of multi-beam laser welding in order to demonstrate the potential of numerical optimization for the further improvement of this welding technique.

For this purpose a constrained nonlinear programming problem is formulated which provides a solution for the hot cracking problem by minimizing the accumulated transverse strain, i.e. the opening displacement, in the solid-liquid region. This approach is based on the so-called strip expansion technique, cf. [6]. For the objective function investigated in this paper it is sufficient to take into account a stationary temperature field in a moving reference frame. It is described by a partial differential equation for which it is possible to find a semi-analytical solution in terms of Bessel functions. Their computation is very time consuming and should be performed in parallel. If an optimization of the process is desired the amount of computation increases even more. This is due to the fact that, in addition to the solution of the partial differential equation, certain sensitivities must be computed in each loop of the optimization iteration, i.e., partial derivatives of the simulation output with respect to the optimization parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akesson, B., Karlsson, L.: Prevention of Hot Cracking of Butt Welds in Steel Panels by Controlled Additional Heating of the Panels. Welding Research International, 6(5), 35–52 (1976)

    Google Scholar 

  2. Herold, H., Streitenberger, M., Pchennikov, A., Makarov, E.: Modelling of one sided welding to describe hot cracking at the end of longer Butt weld seams. Welding in the World, 43(2), 56–64 (1999)

    Google Scholar 

  3. Ploshikhin, V., Prikhodovsky, A., Makhutin, M., Zoch, H.-W., Heimerdinger, C, Palm, F.: Multi-beam welding: advanced technique for crack-free laser welding. Proc. 4th Int. Conf., “LANE-Laser Assisted Net Shape Engineering-2004”, Erlangen (Sept. 2004), to be published

    Google Scholar 

  4. Ploshikhin, V., Prikhodovsky, A., Zoch, H.-W.: Technologische Maßnahmen zur Vermeidung der Heißrissbildung beim Schweißen von Aluminiumlegierungen, Schweißen und Löten im Luft-und Raumfahrzeugbau. DVS-Verlag, Düsseldorf (2004), p. 46–51

    Google Scholar 

  5. Plochikhine, V., Prikhodovsky, A., Zoch, H.-W.: Zum Mechanismus der Heißrissbildung beim Schweißen von Al-Legierungen. HTM, 58(6), 357–362 (2003)

    Google Scholar 

  6. Plochikhine, V., Zoch, H.-W., Karkhin, V.A., Makhutin, M., Pesch, H.J.: Numerical optimisation of the temperature field for the prevention of solidification cracking during laser beam welding using the multi-beam technique. Proc. of Int. Conf., “Materials Week 2002”, Munich (2002)

    Google Scholar 

  7. Rykalin, N.N.: Berechnung der Wäxmevorgänge beim Schweißen. VEB Verlag Technik, Berlin (1957)

    Google Scholar 

  8. Spellucci P.: DONLP2 USERS GUIDE. Technische Universität Darmstadt

    Google Scholar 

  9. Shumilin, V.G., Karkhin, V.A., Rakhman, M.I., Gatovsky, K.M.: A Technique of Arc Welding. Patent No. 1109280, USSR (1980)

    Google Scholar 

  10. NIST Guide to Available Mathematical Software (GAMS), http://gams.nist.gov/serve.cgi/Module/SPECFUN/K0/9271/, 31.10.2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petzet, V. et al. (2005). OPTILAS: Numerical Optimization as a Key Tool for the Improvement of Advanced Multi-Beam Laser Welding Techniques. In: Bode, A., Durst, F. (eds) High Performance Computing in Science and Engineering, Garching 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28555-5_14

Download citation

Publish with us

Policies and ethics