Skip to main content

A Primer in 3D Radiative Transfer

  • Chapter

Part of the book series: Physics of Earth and Space Environments ((EARTH))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aida, M. (1977a). Reflection of solar radiation from an array of cumuli. J. Met. Soc. Japan, 55, 174–181.

    Google Scholar 

  • Aida, M. (1977b). Scattering of solar radiation as a function of cloud dimensions and orientation. J. Quant. Spectrosc. Radiat. Transfer, 17, 303–310.

    Google Scholar 

  • Antyufeev, V.S. and A.N. Bondarenko (1996). X-ray tomography in scattering media. SIAM J. Appl. Math., 56, 573–587.

    Google Scholar 

  • Appleby, J.F. and D. van Blerkom (1975). Absorption line studies of reflection from horizontally inhomogeneous layers. Icarus, 24, 51–69.

    Google Scholar 

  • Avaste, O.A. and G.M. Vainikko (1974). Solar radiative transfer in broken clouds. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 10, 1054–1061.

    Google Scholar 

  • Barkstrom, B.R. and R.F. Arduini (1977). The effect of finite size of clouds upon the visual albedo of the earth. In Radiation in the Atmosphere. H.-J. Bolle (ed.). Science Press, Princeton (NJ), pp. 188–190.

    Google Scholar 

  • Bell, G.I. and S. Glasstone (1970). Nuclear Reactor Theory. Van Nostrand Reinholt, New York (NY).

    Google Scholar 

  • Berry, M.V. and I.C. Percival (1986). Optics of fractal clusters such as smoke. Optica Acta, 33, 577–591.

    Google Scholar 

  • Bohren, C.F., J.R. Linskens, and M.E. Churma (1995). At what optical thickness does a cloud completely obscure the sun? J. Atmos. Sci., 52, 1257–1259.

    Google Scholar 

  • Box, M.A., Keevers, M., and B.H.J. McKellar, (1988). On the perturbation series for radiative effects. J. Quant. Spectrosc. Radiat. Transfer, 39, 219–223.

    Google Scholar 

  • Box, M.A., S.A.W. Gerstl, and C. Simmer (1989). Computation of atmospheric radiative effects via perturbation theory. Beitr. Phys. Atmosph., 62, 193–199.

    Google Scholar 

  • Box, M.A., Polonsky, I.N., and A.B. Davis (2003). Radiative transfer through inhomogeneous turbid media: Implementation of the adjoint perturbation approach at the first-order. J. Quant. Spectrosc. Radiat. Transfer, 78, 85–98.

    Google Scholar 

  • Cannon, C.J. (1970). Line transfer in two dimensions. Astrophys. J., 161, 255–264.

    Google Scholar 

  • Capra, F. (1991). The Tao of Physics. Shambhala Publ., Boston (MA), 3rd edition.

    Google Scholar 

  • Case, K.M. and P.F. Zweifel (1967). Linear Transport Theory. Addison-Wesley, Reading (MA).

    Google Scholar 

  • Chandrasekhar, S. (1950). Radiative Transfer. Oxford University Press, reprinted by Dover Publications (1960), New York (NY).

    Google Scholar 

  • Chandrasekhar, S. (1958). On the diffuse reflection of a pencil of radiation by a plane-parallel atmosphere. Proc. Natl. Acad. Sci. U.S.A., 44, 933–940.

    Google Scholar 

  • Choulli, M. and P. Stefanov (1996). Reconstruction of the coefficient of the stationary transport equation from boundary measurements. Inverse Problems, 12, L19–L23.

    Google Scholar 

  • Davies, R. (1978). The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds. J. Atmos. Sci., 35, 1712–1725.

    Google Scholar 

  • Davies, R. and J.A. Weinman (1977). Results from two models of the three dimensional transfer of solar radiation in finite clouds. In Radiation in the Atmosphere. H.-J. Bolle (ed.). Science Press, Princeton (NJ), pp. 225–227.

    Google Scholar 

  • Davis, A.B. (2002). Cloud remote sensing with sideways-looks: Theory and first results using Multispectral Thermal Imager (MTI) data. In SPIE Proceedings: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII. S.S. Shen and P.E. Lewis (eds.). S.P.I.E. Publications, Bellingham, WA, pp. 397–405.

    Google Scholar 

  • Davis, A.B. and A. Marshak (2001). Multiple scattering in clouds: Insights from three-dimensional diffusion/P1 theory. Nuclear Sci. and Engin., 137, 251–280.

    Google Scholar 

  • Davis, A.B. and A. Marshak (2004). Photon propagation in heterogeneous optical media with spatial correlations: Enhanced mean-free-paths and wider-than-exponential free-path distributions. J. Quant. Spectrosc. Radiat. Transfer, 84, 3–34.

    Google Scholar 

  • Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill, and S.P. Love (1999). Off-beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24, 757–765.

    Google Scholar 

  • Deirmendjian, D. (1969). Electromagnetic Scattering on Spherical Polydispersions. Elsevier, New York (NY).

    Google Scholar 

  • Di Girolamo, L., T. Várnai, and R. Davies (1998). Apparent breakdown of reciprocity in reflected solar radiances. J. Geophys. Res., 103, 8795–8803.

    Google Scholar 

  • Diner, D.J., G.P. Asner, R. Davies, Yu. Knyazikhin, J.-P. Muller, A.W. Nolin, B. Pinty, C.B. Schaaf, and J. Stroeve (1999). New directions in Earth observing: Scientific application of multi-angle remote sensing. Bull. Amer. Meteor. Soc., 80, 2209–2228.

    Google Scholar 

  • Dutton, E.G., A. Farhadi, R.S. Stone, C.N. Long, and D.W. Nelson (2004). Long-term variations in the occurrence and effective solar transmission of clouds as determined from surface-based total irradiance observations. J. Geophys. Res., 109, D03204, doi:10.1029/2003JD003568.

    Google Scholar 

  • Germogenova, T.A. (1986). The Local Properties of the Solution of the Transport Equation (in Russian). Nauka, Moscow (Russia).

    Google Scholar 

  • Giovanelli, R.G. (1959). Radiative transfer in non-uniform media. Aust. J. Phys., 12, 164–170.

    Google Scholar 

  • Giovanelli, R.G. and J.T. Jefferies (1956). Radiative transfer with distributed sources. Lond. Phys. Soc. Proc., 69, 1077–1084.

    Google Scholar 

  • Henyey, L.C. and J.L. Greenstein (1941). Diffuse radiation in the galaxy. Astrophys. J., 93, 70–83.

    Google Scholar 

  • Ishimaru, A. (1975). Correlations functions of a wave in a random distribution of stationary and moving scatterers. Radio Science, 10, 45–52.

    Google Scholar 

  • Kaufman, Y.J. (1979). Effect of the Earth’s atmosphere on contrast for zenith observation. J. Geophys. Res., 84, 3165–3172.

    Google Scholar 

  • Knyazikhin, Yu., A. Marshak, W.J. Wiscombe, J. Martonchik, and R.B. Myneni (2002). A missing solution to the transport equation and its effect on estimation of cloud absorptive properties. J. Atmos. Sci., 59, 3572–3585.

    Google Scholar 

  • Lilienfeld, P. (2004). A blue sky history. Optics and Photonics News (OPN), 15, 32–39.

    Google Scholar 

  • Liou, K.-N. (2002). An Introduction to Atmospheric Radiation. Academic Press, San Diego (CA), 2nd edition.

    Google Scholar 

  • Lovejoy, S. (1982). The area-parameter relation for rain and clouds. Science, 216, 185–187.

    Google Scholar 

  • Lyapustin, A.I. and Yu. Knyazikhin (2002). Green’s function method for the radiative transfer problem. 2. Spatially heterogeneous anisotropic surface. Applied Optics, 41, 5600–5606.

    Google Scholar 

  • Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. W. H. Freeman, New York (NY).

    Google Scholar 

  • Marchuk, G. (1964). Equation for the value of information from weather satellites and formulation of inverse problems. Kosm. Issled., 2, 462–477.

    Google Scholar 

  • Marchuk, G., G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin, and B. Elepov (1980). The Monte Carlo Methods in Atmospheric Optics. Springer-Verlag, New York (NY).

    Google Scholar 

  • Marshak, A., Yu. Knyazikhin, A.B. Davis, W.J. Wiscombe, and P. Pilewskie (2000). Cloud — vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness. Geophys. Res. Lett., 27, 1695–1698.

    Google Scholar 

  • Marshak, A., Yu. Knyazikhin, K.D. Evans, and W.J. Wiscombe (2004). The “RED versus NIR” plane to retrieve broken-cloud optical depth from ground-based measurements. J. Atmos. Sci., 61, 1911–1925.

    Google Scholar 

  • McKee, T.B. (1976). Simulated radiance patterns for finite cubic clouds. J. Atmos. Sci., 33, 2014–2020.

    Google Scholar 

  • McKee, T.B. and S.K. Cox (1974). Scattering of visible radiation by finite clouds. J. Atmos. Sci., 31, 1885–1892.

    Google Scholar 

  • Mihalas, D. (1979). Stellar Atmospheres. Freeman, San Francisco (CA), 2nd edition.

    Google Scholar 

  • Minnaert, M. (1941). The reciprocity principle in lunar photometry. Astrophys. J., 93, 403–410.

    Google Scholar 

  • Mishchenko, M.I. (2003). Radiative transfer theory: From Maxwell’s equations to practical applications. In Wave Scattering in Complex Media: From Theory to Applications. B.A. van Tiggelen and S.E. Skipetrov (eds.). Kluwer Academic, Dordrecht (the Netherlands), pp. 367–414.

    Google Scholar 

  • Mishchenko, M.I., J.W. Hovenier, and L.D. Travis (2000). Light Scattering by Non-Sperical Particles. Academic Press, San Diego (CA).

    Google Scholar 

  • Mullamaa, Ü.-A.R., M.A. Sulev, V.K. Poldmaa, H.A. Ohvril, H.J. Niilisk, M.I. Allenov, L.G. Chubakov, and A.E. Kuusk (1972). Stochastic Structure of Cloud and Radiation Fields, Ü.-A. R. Mullamaa (ed.). IPA, Acad. Sci. Est. SSR, Tartu, 282 pp (in Russian, English translation: 1975. Technical Report TT F-822, NASA Technical Translation, Washington (DC).

    Google Scholar 

  • Nicodemus, F.E., J.C. Richmond, J.J. Hsia, I.W. Ginsberg, and T. Limperis (1977). Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards, NBS Monograph No. 160.

    Google Scholar 

  • Odell, A.P. and J.A. Weinman (1975). The effect of atmospheric haze on images of the Earth’s surface. J. Geophys. Res., 80, 5035–5040.

    Google Scholar 

  • Otterman, J. and R.S. Fraser (1979). Adjacency effects on imaging by surface reflection and atmospheric scattering: Cross radiance zenith. Appl. Opt., 18, 2852–2860.

    Google Scholar 

  • Polonsky, I.N., M.A. Box, and A.B. Davis (2003). Radiative transfer through inhomogeneous turbid media: Implementation of the adjoint perturbation approach at the first-order. J. Quant. Spectrosc. Radiat. Transfer, 78, 85–98.

    Google Scholar 

  • Rahman, H., B. Pinty, and M.M. Verstraete (1993). Coupled surface-atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data. J. Geophys. Res., 98, 20,791–20,801.

    Google Scholar 

  • Ramanathan, V., P.J. Crutzen, A.P. Mitra, and D. Sikka (2002). The INDian Ocean EXperiment and the Asian brown cloud. Curr. Sci., 83, 947–955.

    Google Scholar 

  • Richards, P.I. (1956). Scattering from a point-source in plane clouds. J. Opt. Soc. Am., 46, 927–934.

    Article  Google Scholar 

  • Romanova, L.M. (1968a). Light field in the boundary layer of a turbid medium with strongly anisotropic scattering illuminated by a narrow beam. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 4, 1185–1196 (in Russian), 679–685 (English translation).

    Google Scholar 

  • Romanova, L.M. (1968b). The light field in deep layers of a turbid medium illuminated by a narrow beam. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 4, 311–320 (in Russian), 175–179 (English translation).

    Google Scholar 

  • Romanova, L.M. (1971a). Effective size of the light spot on the boundaries of a thick turbid medium illuminated by a narrow beam. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 7, 410–420 (in Russian), 270–277 (English translation).

    Google Scholar 

  • Romanova, L.M. (1971b). Some characteristics of the light field generated by a point-collimated stationary light source in clouds and fog. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 7, 1153–1164 (in Russian), 758–764 (English translation).

    Google Scholar 

  • Romanova, L.M. (1975). Radiative transfer in a horizontally inhomogeneous scattering medium. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 11, 509–513.

    Google Scholar 

  • Ronnholm, K., M.B. Baker, and H. Harrison (1980). Radiation transfer through media with uncertain or random parameters. J. Atmos. Sci., 37, 1279–1290.

    Google Scholar 

  • Schuster, A. (1905). Radiation through a foggy atmosphere. Astrophys. J., 21, 1–22.

    Google Scholar 

  • Schwartz, L. (1950). Théorie des Distributions, 2 vols. Hermann, Paris (France).

    Google Scholar 

  • Siegel, R. and J.R. Howell (1981). Thermal Radiation Heat Transfer. McGraw-Hill, New York (NY), 2nd edition.

    Google Scholar 

  • van Blerkom, D.J. (1971). Diffuse reflection from clouds with horizontal inhomogeneities. Astrophys. J., 166, 235–242.

    Google Scholar 

  • Weber, P.G., B.C. Brock, A.J. Garrett, B.W. Smith, C.C. Borel, W.B. Clodius, S.C. Bender, R. Rex Kay, and M.L. Decker (1999). Multispectral Thermal Imager mission overview. SPIE Proceedings, 3753, 340–346.

    Google Scholar 

  • Weinman, J.A. and P.N. Swartztrauber (1968). Albedo of a striated medium of isotropically scattering particles. J. Atmos. Sci., 34, 642–650.

    Google Scholar 

  • Wendling, P. (1977). Albedo and reflected radiance of horizontally inhomogeneous clouds. J. Atmos. Sci., 34, 642–650.

    Google Scholar 

  • Wiscombe, W.J. (1977). The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34, 1408–1422.

    Google Scholar 

  • Wolf, E. (1976). New theory of radiative energy transfer in free electromagnetic fields. Phys. Rev. D, 13, 869–886.

    Google Scholar 

  • Yodh, A. and B. Chance (1995). Spectroscopy and imaging with diffusing light. Phys. Today, 48, 34–40.

    Google Scholar 

  • Zhang, Y., N. Shabanov, Yu. Knyazikhin, and R.B. Myneni (2002). Assessing the information content of multiangle satellite data for mapping biomes. II. Theory. Remote Sens. Environ., 80, 435–446.

    Google Scholar 

Suggested Reading

  • Chandrasekhar, S. (1950). Radiative Transfer. 393 pp., Oxford University Press, London (United Kingdom): reprinted by Dover (1960), New York (NY).

    Google Scholar 

  • Davison, B. (1958). Neutron Transport Theory. 450 pp., Oxford University Press, London (United Kingdom).

    Google Scholar 

  • Vladimirov, V.S. (1963). Mathematical Problems in the One-Velocity Theory of Particle Transport, Tech. Rep. AECL-1661, Atomic Energy of Canada Ltd., Chalk River, Ontario.

    Google Scholar 

  • Case, K.M. and P.F. Zweifel (1967). Linear Transport Theory. Addison-Wesley Publ. Co., Reading (MA).

    Google Scholar 

  • Bell, G.I. and S. Glasstone (1970). Nuclear Reactor Theory. 619 pp., Van Nostrand Reinholt, New York (NY).

    Google Scholar 

  • Pomraning, G.C. (1973). The Equations of Radiation Hydrodynamics. 288 pp., Oxford-Pergamon Press, New York (NY).

    Google Scholar 

  • Preisendorfer, R.W. (1978). Hydrological Optics, NOAA-PMEL (Hawaii).

    Google Scholar 

  • Ishimaru, A. (1978). Wave Propagation and Scattering in Random Media. 2 vols., Academic Press, New York (NY).

    Google Scholar 

  • Mihalas, D. (1979). Stellar Atmospheres. 2nd ed., xvii+632 pp., Freeman, San Francisco (CA).

    Google Scholar 

  • van de Hulst, H.C. (1980). Multiple Light Scattering: Tables, Formulas, and Applications. 2 vols., Academic Press, San Diego (CA).

    Google Scholar 

  • Welch, R.M., S.K. Cox and J. M. Davis (1980). Solar Radiation and Clouds. Meteorological Monograph Series, Vol. 17 (No. 39), American Meteorological Society, Boston (MA).

    Google Scholar 

  • Siegel, R. and J.R. Howell (1981). Thermal Radiation Heat Transfer. 2nd ed., xvi+862 pp., McGraw-Hill, New York (NY).

    Google Scholar 

  • Bohren, C.F. and D.R. Huffman (1983). Absorption and Scattering of Light by Small Particles. xiv+530 pp., Wiley, New York (NY).

    Google Scholar 

  • Lenoble, J. (ed.) (1985). Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. A. Deepak Publ., Hampton (VA).

    Google Scholar 

  • Germogenova, T.A. (1986). The Local Properties of the Solution of the Transport Equation (in Russian). 272 pp., Nauka, Moscow (Russia).

    Google Scholar 

  • Goody, R.M. and Y.L. Yung (1989). Atmospheric Radiation: Theoretical Basis. xiii+519 pp., Oxford University Press, New York (NY).

    Google Scholar 

  • Lewis, E.E. and W.F. Miller, Jr. (1993). Computational Methods of Neutron Transport. xvi+401 pp., American Nuclear Society, La Grange Park (IL).

    Google Scholar 

  • Stephens, G.L. (1994). Remote Sensing of the Lower Atmosphere: An Introduction. xvi+523 pp., Oxford University Press, New York (NY).

    Google Scholar 

  • Lenoble, J. (1993). Atmospheric Radiative Transfer. 532 pp., A. Deepak Publ., Hampton (VA).

    Google Scholar 

  • Thomas, G.E. and K. Stamnes (1999). Radiative Transfer in the Atmosphere and Ocean. 546 pp., Cambridge University Press, New York (NY).

    Google Scholar 

  • Wolf, E. (2001). Selected Works of Emil Wolf, with Commentary. x+661 pp., World Scientific Co., Singapore.

    Google Scholar 

  • Liou, K.N. (2002). An Introduction to Atmospheric Radiation. 2nd Ed., xiv+583 pp., Academic Press, San Diego (CA).

    Google Scholar 

  • Kokhanovsky, A.A. (2004). Light Scattering Media Optics, Problems and Solutions. 3rd ed., Springer, Heidelberg (Germany).

    Google Scholar 

  • Irvine, W.M. (1964). The formation of absorption bands and the distribution of photon optical paths in a scattering atmosphere. Bull. Astron. Inst. Neth., 17, 266–279.

    Google Scholar 

  • Ivanov, V.V. and S.D. Gutshabash (1974). Propagation of brightness wave in an optically thick atmosphere. Physika Atmosphery i Okeana, 10, 851–863.

    Google Scholar 

  • Davis, A. and A. Marshak (1997). Lévy kinetics in slab geometry: Scaling of transmission probability. In Fractal Frontiers, M.M. Novak and T.G. Dewey (eds.), World Scientific, Singapore, pp. 63–72.

    Google Scholar 

  • Davis, A.B. and A. Marshak (2001). Multiple scattering in clouds: Insights from three-dimensional diffusion/P1 theory. Nucl. Sci. Eng., 137, 251–288.

    Google Scholar 

  • Platnick, S. (2001). A superposition technique for deriving photon scattering statistics in plane-parallel cloudy atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 68, 57–73.

    Google Scholar 

  • Davis, A.B. and A. Marshak (2002). Space-time characteristics of light transmitted by dense clouds: A Green function analysis. J. Atmos. Sci., 59, 2713–2727.

    Google Scholar 

  • Pfeilsticker, K., F. Erle, O. Funk, H. Veitel and U. Platt (1998). First geometrical pathlength distribution measurements of skylight using the oxygen A-band absorption technique — I, Measurement technique, atmospheric observations, and model calculations. J. Geophys. Res., 103, 11,483–11,504.

    Google Scholar 

  • Pfeilsticker, K. (1999). First geometrical pathlength distribution measurements of skylight using the oxygen A-band absorption technique-II, Derivation of the Lévy-index for skylight transmitted by mid-latitude clouds. J. Geophys. Res., 104, 4101–4116.

    Google Scholar 

  • Min, Q.-L. and L.C. Harrison (1999). Joint statistics of photon pathlength and cloud optical depth. Geophys. Res. Lett., 26, 1425–1428.

    Google Scholar 

  • Stephens, G.L. and A. Heidinger (2000). Molecular line absorption in a scattering atmosphere — Part I: Theory. J. Atmos. Sci., 57, 1599–1614.

    Google Scholar 

  • Heidinger, A. and G.L. Stephens (2000). Molecular line absorption in a scattering atmosphere — Part II: Application to remote-sensing in the O2 A-Band. J. Atmos. Sci., 57, 1615–1634.

    Google Scholar 

  • Min, Q.-L., L.C. Harrison and E.E. Clothiaux (2001). Joint statistics of photon pathlength and cloud optical depth: Case studies. J. Geophys. Res., 106, 7375–7385.

    Google Scholar 

  • Portman, R.W., S. Solomon, R.W. Sanders, J.S. Daniels and E.G. Dutton (2001). Cloud modulation of zenith sky oxygen photon path lengths over Boulder: Measurement versus model. J. Geophys. Res., 106, 1139–1155.

    Google Scholar 

  • Heidinger, A. and G.L. Stephens (2002). Molecular line absorption in a scattering atmosphere — Part III: Path length characteristics and the effects of spatially heterogeneous clouds. J. Atmos. Sci., 59, 1641–1654.

    Google Scholar 

  • Min, Q.-L., L.C. Harrison, P. Kiedron, J. Berndt and E. Joseph (2004). A high-resolution oxygen A-band and water vapor band spectrometer. J. Geophys. Res., 109, D02202, doi:10.1029/2003JD003540.

    Google Scholar 

  • Winker, D.M. and L.R. Poole (1995). Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARs. Applied Physics B-Lasers and Optics, B60, 341–344.

    Google Scholar 

  • Winker, D.M., R.H. Couch and M.P. McCormick (1996). An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE, 84, 164–180.

    Google Scholar 

  • Miller, S.D. and G.L. Stephens (1999). Multiple scattering effects in the lidar pulse stretching problem. J. Geophys. Res., 104, 22,205–22,219.

    Google Scholar 

  • Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill and S.P. Love (1999). Off-beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24, 757–765.

    Google Scholar 

  • Davis, A.B., D.M. Winker and M.A. Vaughan (2001). First retrievals of dense cloud properties from off-beam/multiple-scattering lidar data collected in space. In Laser Remote sensing of the atmosphere: Selected Papers from the 20th International Conference on Laser Radar, A. Dabas and J. Pelon (eds.), École Polytechnique, Palaiseau (France), pp. 35–38.

    Google Scholar 

  • Kotchenova, S.Y., N.V. Shabanov, Y. Knyazikhin, A.B. Davis, R. Dubayah and R.B. Myneni (2003). Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest biomass. J. Geophys. Res., 108(D15), 4484, doi:1029/2002JD003288.

    Google Scholar 

  • Evans, K.F., R.P. Lawson, P. Zmarzly, D. O’Connor and W.J. Wiscombe (2003). In situ cloud sensing with multiple scattering lidar: Simulations and demonstration. J. Atmos. Ocean Tech., 20, 1505–1522.

    Google Scholar 

  • Thomason, L.W. and E.P. Krider (1982). The effects of clouds on the light produced by lightning. J. Atmos. Sci., 39, 2051–2065.

    Google Scholar 

  • Koshak, W.J., R.J. Solakiewicz, D.D. Phanord and R.J. Blakeslee (1994). Diffusion model for lightning radiative transfer. J. Geophys. Res., 99, 14,361–14,371.

    Google Scholar 

  • Light, T.E., D.M. Suszcynsky, M.W. Kirkland and A.R. Jacobson (2001). Simulations of lightning optical waveforms as seen through clouds by satellites. J. Geophys. Res., 106, 17,103–17,114.

    Google Scholar 

  • Mekler, Y. and Y.J. Kaufman (1980). The effect of Earth’s atmosphere on contrast reduction for a nonuniform surface albedo and “two-halves” field. J. Geophys. Res., 85, 4067–4083.

    Google Scholar 

  • Otterman, J., S. Ungar, Y. Kaufman and M. Podolak (1980). Atmospheric effects on radiometric imaging from satellites under low optical thickness conditions. Remote Sens. Environ., 9, 115–129.

    Google Scholar 

  • Tanré, D., M. Herman and P.-Y. Deschamps (1981). Influence of the background contribution upon space measurements of ground reflectance. Appl. Optics., 20, 3676–3684.

    Article  Google Scholar 

  • Kaufman, Y.J. (1982). Solution of the equation of radiative-transfer for remote-sensing over nonuniform surface reflectivity. J. Geophys. Res., 87, 4137–4147.

    Google Scholar 

  • Diner, D.J. and J.V. Martonchik (1984). Atmospheric transfer of radiation above an inhomogeneous non-Lambertian ground: 1 — Theory. J. Quant. Spectrosc. Radiat. Transfer, 31, 97–125.

    Google Scholar 

  • Diner, D.J. and J.V. Martonchik (1984). Atmospheric transfer of radiation above an inhomogeneous non-Lambertian ground: 2 — Computational considerations and results. J. Quant. Spectrosc. Radiat. Transfer, 31, 279–304.

    Google Scholar 

  • Takashima, T. and K. Masuda (1992). Simulation of atmospheric effects on the emergent radiation over a checkerboard type of terrain. Astrophys. Space Sci., 198, 253–263

    Google Scholar 

  • Reinersman, P.N. and K.L. Carder (1995). Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect. Appl. Optics., 34, 4453–4471.

    Google Scholar 

  • Lyapustin, A.I. (2001). Three-dimensional effects in the remote sensing of surface albedo. IEEE Trans. Geosc. and Remote Sens., 39, 254–263.

    Google Scholar 

  • Lyapustin, A.I. and Y. Kaufman (2001). Role of adjacency effect in the remote sensing of aerosol. J. Geophys. Res., 106, 11,909–11,916.

    Google Scholar 

  • Lyapustin, A.I. and Y. Knyazikhin (2002). Green’s function method for the radiative transfer problem. II. Spatially heterogeneous anisotropic surface. Appl. Optics., 41, 5600–5606.

    Google Scholar 

  • Weinman, J.A. and M. Masutani (1987). Radiative transfer models of the appearance of city lights obscured by clouds observed in nocturnal satellite images. J. Geophys. Res., 92, 5565–5572.

    Google Scholar 

  • Stephens, G.L. (1986). Radiative transfer in spatially heterogeneous, two-dimensional anisotropically scattering media, J. Quant. Spectrosc. Radiat. Transfer, 36, 51–67.

    Google Scholar 

  • Stephens, G.L. (1988). Radiative transfer through arbitrary shaped optical media, Part 1 — A general method of solution. J. Atmos. Sci., 45, 1818–1835.

    Google Scholar 

  • Ganapol, B.D., D.E. Kornreich, J.A. Dahl, D.W. Nigg, S.N. Jahshan and C.A. Temple (1994). The searchlight problem for neutrons in a semi-infinite medium. Nucl. Sci. Eng., 118, 38–53.

    Google Scholar 

  • Marshak, A., A. Davis, W.J. Wiscombe and R.F. Cahalan (1995). Radiative smoothing in fractal clouds. J. Geophys. Res., 100, 26,247–26,261.

    Google Scholar 

  • Kornreich, D.E. and B.D. Ganapol (1997). Numerical evaluation of the three-dimensional searchlight problem in a half-space. Nucl. Sci. Eng., 127, 317–337.

    Google Scholar 

  • Davis, A., A. Marshak, R.F. Cahalan and W.J. Wiscombe (1997). The Landsat scalebreak in stratocumulus as a three-dimensional radiative transfer effect: Implications for cloud remote sensing. J. Atmos. Sci., 54, 241–260.

    Google Scholar 

  • Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill and S.P. Love (1999). Off-beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24, 757–765.

    Google Scholar 

  • Romanova, L.M. (2001). Narrow light beam propagation in a stratified cloud: Higher transverse moments. Izv. Atmos. Oceanic Phys., 37, 748–756.

    Google Scholar 

  • Platnick, S. (2001). Approximations for horizontal photon transport in cloud remote sensing problems. J. Quant. Spectrosc. Radiat. Transfer, 68, 75–99.

    Google Scholar 

  • Davis, A.B. and A. Marshak (2001). Multiple scattering in clouds: Insights from three-dimensional diffusion/P1 theory. Nucl. Sci. Eng., 137, 251–288.

    Google Scholar 

  • Davis, A.B. and A. Marshak (2002). Space-time characteristics of light transmitted by dense clouds: A Green function analysis. J. Atmos. Sci., 59, 2713–2727.

    Google Scholar 

  • Polonsky, I.N. and A.B. Davis (2004). Lateral photon transport in dense scatering and weakly absorbing media of finite thickness: Asymptotic analysis of the space-time Green functions. J. Opt. Soc. Amer. A, 21, 1018–1025.

    Google Scholar 

  • Borovoi, A.G. (1984). Radiative transfer in inhomogeneous media. Dok. Akad. Nauk SSSR, 276, 1374–1378. (English version in Sov. Phys. Dokl., 29(6).)

    Google Scholar 

  • Stephens, G.L. (1988). Radiative transfer through arbitrarily shaped media, Part 2 — Group theory and closures. J. Atmos. Sci., 45, 1836–1848.

    Google Scholar 

  • Evans, K.F. (1993). A general solution for stochastic radiative transfer. Geophys. Res. Lett., 20, 2075–2078.

    Google Scholar 

  • Davis, A. and A. Marshak (1997). Lévy kinetics in slab geometry: Scaling of transmission probability. In Fractal Frontiers, M.M. Novak and T.G. Dewey (eds.), World Scientific, Singapore, pp. 63–72.

    Google Scholar 

  • Cairns, B., A.W. Lacis and B.E. Carlson (2000). Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57, 700–714.

    Google Scholar 

  • Kostinski, A.B. (2001). On the extinction of radiation by a homogeneous but spatially correlated random medium. J. Opt. Soc. Amer. A, 18, 1929–1933.

    Google Scholar 

  • Shaw, R.A., A.B. Kostinski and D.D. Lanterman (2002). Super-exponential extinction of radiation in a negatively-correlated random medium. J. Quant. Spectrosc. Radiat. Transfer, 75, 13–20.

    Google Scholar 

  • Knyazikhin, Y., A. Marshak, W.J. Wiscombe, J. Martonchik and R.B. Myneni (2002). A missing solution to the transport equation and its effect on estimation of cloud absorptive properties. J. Atmos. Sci., 59, 3572–3585.

    Google Scholar 

  • Davis, A.B. and A. Marshak (2004). Photon propagation in heterogeneous optical media with spatial correlations: Enhanced mean-free-paths and wider-than-exponential free-path distributions. J. Quant. Spectrosc. Radiat. Transfer., 84, 3–34.

    Google Scholar 

  • Savigny, C. von, O. Funk, U. Platt and K. Pfeilsticker (1999). Radiative smoothing in zenith-scattered skylight transmitted through clouds to the ground. Geophys. Res. Lett., 26, 2949–2952.

    Google Scholar 

  • Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill and S.P. Love (1999). Off-beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24, 757–765.

    Google Scholar 

  • Marshak, A., Y. Knyazikhin, A.B. Davis, W.J. Wiscombe and P. Pilewskie (2000). Cloud-vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness. Geophys. Res. Lett., 27, 1695–1698.

    Google Scholar 

  • Love, S.P., A.B. Davis, C. Ho and C.A. Rohde (2001). Remote sensing of cloud thickness and liquid water content with Wide-Angle Imaging Lidar (WAIL). Atm. Res., 59–60, 295–312.

    Google Scholar 

  • Barker, H.W. and A. Marshak (2001). Inferring optical depth of broken clouds above green vegetation using surface solar radiometric measurements. J. Atmos. Sci., 58, 2989–3006.

    Google Scholar 

  • Barker, H.W., A. Marshak, W. Szyrmer, A. Trishchenko, J.-P. Blanchet, and Z. Li (2002). Inference of cloud optical depth from aircraft-based solar radiometric measurements. J. Atmos. Sci., 59, 2093–2111.

    Google Scholar 

  • Evans, K.F., R.P. Lawson, P. Zmarzly, D. O’Connor and W.J. Wiscombe (2003). In situ cloud sensing with multiple scattering lidar: Simulations and demonstration. J. Atmos. Ocean Tech., 20, 1505–1522.

    Google Scholar 

  • Marshak, A., Yu. Knyazikhin, K.D. Evans and W.J. Wiscombe (2004). The “RED versus NIR” plane to retrieve broken-cloud optical depth from ground-based measurements. J. Atmos. Sci., 61, 1911–1925.

    Google Scholar 

  • Loeb, N.G. and R. Davies (1996). Observational evidence of plane parallel model biases: Apparent dependence of cloud optical depth on solar zenith angle. J. Geophys. Res., 101, 1621–1634.

    Google Scholar 

  • Di Girolamo, L. (1999). Reciprocity principle applicable to reflected radiance measurements and the searchlight problem. Appl. Optics, 38, 3196–3198.

    Google Scholar 

  • Diner, D.J., G.P. Asner, R. Davies, Y. Knyazikhin, J.P. Muller, A.W. Nolin, B. Pinty, C.B. Schaaf and J. Stroeve (1999). New directions in Earth observing: Scientific application of multi-angle remote sensing. Bull. Amer. Meteor. Soc., 80, 2209–2228.

    Google Scholar 

  • Knyazikhin, Y. and A. Marshak (2000). Mathematical aspects of BRDF modeling: Adjoint problem and Green’s function. Remote Sens. Rev. 18, 263–280.

    Google Scholar 

  • Martonchik, J.V., C.J. Bruegge and A. Strahler (2000). A review of reflectance nomenclature used in remote sensing. Remote Sens. Rev., 19, 9–20.

    Google Scholar 

  • Snyder, W.C. (2002). Definition and invariance properties of structured surface BRDF. IEEE Trans. Geoscience Rem. Sensing, 40, 1032–1037.

    Google Scholar 

  • Welch, R. and W. Zdunkowski (1981). The radiative characteristics of noninteracting cumulus cloud fields, Part I — Parameterization for finite clouds. Contrib. Atmos. Phys., 54, 258–272.

    Google Scholar 

  • Welch, R. and W. Zdunkowski (1981). The radiative characteristics of noninteracting cumulus cloud fields, Part II — Calculations for cloud fields. Contrib. Atmos. Phys., 54, 273–285.

    Google Scholar 

  • Harshvardhan and J. Weinman (1982). Infrared radiative transfer through a regular array of cuboidal clouds. J. Atmos. Sci., 39, 431–439.

    Google Scholar 

  • Harshvardhan and R. Thomas (1984). Solar reflection from interacting and shadowing cloud elements. J. Geophys. Res., 89, 7179–7185.

    Article  Google Scholar 

  • Welch, R.M. and B.A. Wielicki (1984). Stratocumulus cloud field reflected fluxes: The effect of cloud shape. J. Atmos. Sci., 41, 3085–3103

    Google Scholar 

  • Preisendorfer, R.W. and G.L. Stephens (1984). Multimode radiative transfer in finite optical media, I: Fundamentals. J. Atmos. Sci., 41, 709–724.

    Google Scholar 

  • Stephens, G.L. and R.W. Preisendorfer (1984). Multimode radiative transfer in finite optical media, II: Solutions. J. Atmos. Sci., 41, 725–735.

    Google Scholar 

  • Joseph, J. and V. Kagan (1988). The reflection of solar radiation from bar cloud arrays. J. Geophys. Res., 93, 2405–2416.

    Google Scholar 

  • Stephens, G.L. (1985). Reply (to Harshvardan and Randall). Mon. Wea. Rev., 113, 1834–1835.

    Google Scholar 

  • Stephens, G.L., P.M. Gabriel and S.-C. Tsay (1991). Statistical radiative transport in one-dimensional media and its application to the terrestrial atmosphere. Transp. Theory and Statis. Phys., 20, 139–175.

    Google Scholar 

  • Cahalan, R.F., W. Ridgway, W.J. Wiscombe, T.L. Bell and J.B. Snider (1994). The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 2434–2455.

    Google Scholar 

  • Barker, H.W. (1996). A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds — Part 1, Methodology and homogeneous biases. J. Atmos. Sci., 53, 2289–2303.

    Google Scholar 

  • Barker, H.W., B.A. Wielicki and L. Parker (1996). A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds — Part 2, Validation using satellite data. J. Atmos. Sci., 53, 2304–2316.

    Google Scholar 

  • Oreopoulos, L. and H.W. Barker (1999). Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125, 301–330.

    Google Scholar 

  • Cahalan, R.F., W. Ridgway, W.J. Wiscombe, S. Gollmer and Harshvardhan (1994). Independent pixel and Monte Carlo estimates of stratocumulus albedo. J. Atmos. Sci., 51, 3776–3790.

    Google Scholar 

  • Marshak, A., A. Davis, W.J. Wiscombe and G. Titov (1995). The verisimilitude of the independent pixel approximation used in cloud remote sensing. Remote Sens. Environ., 52, 72–78.

    Google Scholar 

  • Marshak, A., A. Davis, W.J. Wiscombe and R.F. Cahalan (1995). Radiative smoothing in fractal clouds. J. Geophys. Res., 100, 26,247–26,261.

    Google Scholar 

  • Chambers, L., B. Wielicki and K.F. Evans (1997). On the accuracy of the independent pixel approximation for satellite estimates of oceanic boundary layer cloud optical depth. J. Geophys. Res., 102, 1779–1794.

    Google Scholar 

  • Davis, A., A. Marshak, R.F. Cahalan and W.J. Wiscombe (1997). The Landsat scalebreak in stratocumulus as a three-dimensional radiative transfer effect, Implications for cloud remote sensing. J. Atmos. Sci., 54, 241–260.

    Google Scholar 

  • Titov, G.A. (1998). Radiative horizontal transport and absorption in stratocumulus clouds. J. Atmos. Sci., 55, 2549–2560.

    Google Scholar 

  • Davis, A.B. and A. Marshak (2001). Multiple scattering in clouds, Insights from three-dimensional diffusion/P1 theory. Nucl. Sci. Eng., 137, 251–288.

    Google Scholar 

  • Savigny, C. von, A.B. Davis, O. Funk and K. Pfeilsticker (2002). Time-series of zenith radiance and surface flux under cloudy skies: Radiative smoothing, optical thickness retrievals and large-scale stationarity. Geophys. Res. Lett., 29, 1825–1828.

    Google Scholar 

  • Gabriel, P.M. and K.F. Evans (1996). Simple radiative-transfer methods for calculating domain-averaged solar fluxes in inhomogeneous clouds. J. Atmos. Sci., 53, 858–877.

    Google Scholar 

  • Marshak, A., A. Davis, R.F. Cahalan and W.J. Wiscombe (1998). Nonlocal independent pixel approximation: Direct and inverse problems. IEEE Trans. Geosc. and Remote Sens., 36, 192–205.

    Google Scholar 

  • Faure, T., H. Isaka and B. Guillemet (2001). Neural network analysis of the radiative interaction between neighboring pixels in inhomogeneous clouds. J. Geophys. Res., 106, 14465–14484.

    Google Scholar 

  • Polonsky, I.N., M.A. Box and A.B. Davis (2003). Radiative transfer through inhomogeneous turbid media: Implementation of the adjoint perturbation approach at the first-order. J. Quant. Spectrosc. Radiat. Transfer, 78, 85–98.

    Google Scholar 

  • Cornet, C., H. Isaka, B. Guillemet and F. Szczap (2004). Neural network retrieval of cloud parameters of inhomogeneous clouds from multispectral and multiscale radiance data: Feasibility study. J. Geophys. Res., 109, D12203, doi:10.1029/2003JD004186.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davis, A., Knyazikhin, Y. (2005). A Primer in 3D Radiative Transfer. In: Marshak, A., Davis, A. (eds) 3D Radiative Transfer in Cloudy Atmospheres. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28519-9_3

Download citation

Publish with us

Policies and ethics