Skip to main content

Cayley DHTs — A Group-Theoretic Framework for Analyzing DHTs Based on Cayley Graphs

  • Chapter
Book cover Semantic Web and Peer-to-Peer

Summary

Static DHT topologies influence important features of DHT systems such as their scalability, communication load balancing properties, routing efficiency and their fault tolerance. While obviously dynamic DHT algorithms which have to approximate these topologies for dynamically changing sets of peers play a very important role for DHT networks, important insights can be gained by clearly focussing on the static DHT topology as well. In this paper we analyze and classify current DHTs in terms of their static topologies based on the Cayley graph group-theoretic model and show that most DHT proposals use Cayley graphs as static DHT topologies, thus taking advantage of several important Cayley graph properties such as symmetry, decomposability and optimal fault tolerance. Using these insights, Cayley DHT design can directly leverage algebraic design methods to generate high-performance DHTs adopting Cayley graph based static DHT topologies, extended with suitable dynamic DHT algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Aberer, A. Datta, and M. Hauswirth. P-Grid: Dynamics of self-organization in structured P2P systems, chapter 21, “Peer-to-Peer-Systems and Applications”. Springer LNCS, In Press, 2004.

    Google Scholar 

  2. Sheldon B. Akers and Balakrishnan Krishnamurthy. A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput., 38(4):555–566, 1989.

    Article  MathSciNet  Google Scholar 

  3. Brian Alspach. Cayley graphs with optimal fault tolerance. IEEE Trans. Comput., 41(10):1337–1339, 1992.

    Article  MathSciNet  Google Scholar 

  4. P. Berthomé, A. Ferreira, and S. Perennes. Optimal information dissemination in star and pancake networks. IEEE Tran. on Parallel and Distrubuted Systems, 7(12), 1996.

    Google Scholar 

  5. F. Boesch and R. Tindell. Circulants and their connectivities. J. Graph Theory, 8(4):487–499, 1984.

    MathSciNet  Google Scholar 

  6. F. Boesch and R. Tindell. Connectivity and symmetry in graphs. In Graphs and applications (Boulder, Colo., 1982), Wiley-Intersci. Publ., pages 53–67. Wiley, New York, 1985.

    Google Scholar 

  7. M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploiting network proximity in distributed hash tables. In International Workshop on Future Directions in Distributed Computing (FuDiCo), Bertinoro, Italy, June 2002.

    Google Scholar 

  8. Stephen J. Curran and Joseph A. Gallian. Hamiltonian cycles and paths in Cayley graphs and digraphs—a survey. Discrete Math., 156(1–3):1–18, 1996.

    MathSciNet  Google Scholar 

  9. W. J. Dally. A VLSI Architecture for Concurrent Data Structures. Hingham, MA: Kluwer, 1987.

    Google Scholar 

  10. M. Datar. Butterflies and peer-to-peer networks. In 10th Annual European Symposium, Lecture Notes in Computer Science, Rome, Italy, September 2002. Springer.

    Google Scholar 

  11. K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The impact of dht routing geometry on resilience and proximity. In ACM Annual Conference of the Special Interest Group on Data Communication (SIGCOMM), Karlsruhe, Germany, August 2003.

    Google Scholar 

  12. M. C. Heydemann and B. Ducourthial. Cayley graphs and interconnection networks. Graph Symmetry, Algebraic Methods and Applications,“NATO ASI C”, 497:167–226, 1997.

    Google Scholar 

  13. W. Mader. Über den Zusammenhang symmetrischer Graphen. Arch. Math. (Basel), 21:331–336, 1970.

    MATH  MathSciNet  Google Scholar 

  14. W. Mader. Eine Eigenschaft der Atome endlicher Graphen. Arch. Math. (Basel), 22:333–336, 1971.

    MATH  MathSciNet  Google Scholar 

  15. D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emulation of the butterfly. In 21st ACM Symposium on Principles of Distributed Computing (PODC 2002), Monterey, California, USA, July 2002.

    Google Scholar 

  16. G. S. Manku. Routing networks for distributed hash tables. In 22nd ACM Symposium on Principles of Distributed Computing (PODC 2003), Boston, USA, July 2003.

    Google Scholar 

  17. W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and A. Löser. Super-peer-based routing and clustering strategies for rdf-based peer-to-peer networks. In 12th Intl. World Wide Web Conference, Budapest, Hungary, May 2003.

    Google Scholar 

  18. S. R. Oehring, F. Sarkar, S. K. Das, and D. H. Hohndel. Cayley graph connected cycles: A new class of fixed-degree interconnection networks. In 28th Annual Hawaii International Conference on System Sciences, Hawaii, USA, May 1995.

    Google Scholar 

  19. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. In Annual Conference of the ACM Special Interest Group on Data Communications (ACM SIGCOMM 2001), San Diego, CA, USA, August 2001.

    Google Scholar 

  20. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), Heidelberg, Germany, November 2001.

    Google Scholar 

  21. Gert Sabidussi. Vertex-transitive graphs. Monatsh. Math., 68:426–438, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Hypercup-hypercubes, ontologies and efficient search on p2p networks. In International Workshop on Agents and Peer-to-Peer Computing, Bologna, Italy, July 2002.

    Google Scholar 

  23. H. Shen, C. Xu, and G. Chen. Cycloid: A constant-degree and lookup-efficient p2p overlay network. In International Parallel and Distributed Processing Symposium (IPDPS2004), Santa Fe, New Mexico, April 2004.

    Google Scholar 

  24. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In Annual Conference of the ACM Special Interest Group on Data Communications (ACM SIGCOMM 2001), San Diego, CA, USA, August 2001.

    Google Scholar 

  25. Mark E. Watkins. Connectivity of transitive graphs. J. Combinatorial Theory, 8:23–29, 1970.

    MATH  MathSciNet  Google Scholar 

  26. B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communications, 22(1), 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Qu, C., Nejdl, W., Kriesell, M. (2006). Cayley DHTs — A Group-Theoretic Framework for Analyzing DHTs Based on Cayley Graphs. In: Staab, S., Stuckenschmidt, H. (eds) Semantic Web and Peer-to-Peer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28347-1_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-28347-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28346-1

  • Online ISBN: 978-3-540-28347-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics