Skip to main content

Funktionelle Neuroanatomie des kraniozervikalen Übergangs

  • Chapter
Die obere Halswirbelsäule

Zusammenfassung

Der Hals hat als flexibler Träger des Kopfes große biomechanische und klinische Bedeutung. Embryologisch betrachtet, stellt der kraniozervikale Übergang die älteste Region des Körpers dar, und ist als solche von vitaler Bedeutung für die regelrechte Entwicklung von Rumpf, Kopf und inneren Organen. Die spezielle Konfiguration der Kopfgelenke (Art. atlantooccipitalis et atlantoaxialis), gepaart mit einem differenzierten Muskelapparat, ziehen das Interesse des Theoretikers, die Häufigkeit mitunter sehr therapieresistenter Syndrome im Kopf-Hals-Übergangsbereich jenes des Klinikers auf sich. Insbesondere sind es Gleichgewichtsstörungen, oft posttraumatisch, aber auch andere »vertebragene« Symptome, wie etwa Hörstörungen, verschiedene Schmerzzustände und psycho-vegetative Syndrome, gern als »zervikoenzephales Syndrom« zusammengefasst, die auf eine Dysfunktion des zervikalen Bewegungsapparats zurückgeführt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abrahams VC, Richmond FJ, Keane J (1984) Projections from C2 and C3 nerves supplying muscles and skin of the cat neck: a study using transganglionic transport of horseradish peroxidase. J Comp Neurol 230:142–154

    Article  PubMed  CAS  Google Scholar 

  • Altschuler SM, Bao X, Bieger D, Hopkins DA, Miselis RR (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 283: 248–268

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson J, Thomander L (1984) An HRP study of the central course of sensory intermediate and vagal fibers in the peripheral facial nerve branches in the cat. J Comp Neurol 223: 35–45

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson J, Pfaller K (1990) Central projections of C4-C8 dorsal root ganglia in the rat studied by anterograde transport of WGA-HRP. J Comp Neurol 292: 349–362

    Article  PubMed  CAS  Google Scholar 

  • Bankoul S (1994) Cervical primary afferent input to vestibulospinal neurones projecting to the dorsal horn: a double labelling study in the rat. Experientia 50: A70

    Google Scholar 

  • Bankoul S, Neuhuber WL (1990) A cervical primary afferent input to vestibular nuclei as demonstrated by retrograde transport of wheat germ agglutinin-horseradish peroxidase in the rat. Exp Brain Res 79:405–411

    Article  PubMed  CAS  Google Scholar 

  • Bankoul S, Neuhuber WL (1992) A direct projection from the medial vestibular nucleus to the cervical spinal dorsal horn of the rat, as demonstrated by anterograde and retrograde tracing. Anat Embryol 185: 77–85

    Article  PubMed  CAS  Google Scholar 

  • Bankoul S, Goto T, Yates B, Wilson VJ (1995) Cervical primary afferent input to vestibulospinal neurons projecting to the cervical dorsal horn: an anterograde tracing study in the cat. J Comp Neurol 353: 529–538

    Article  PubMed  CAS  Google Scholar 

  • Boyd-Clark LC, Briggs CA, Galea MP (2002) Muscle spindle distribution, morphology, and density in longus colli and multifidus muscles of the ervical spine. Spine 27: 694–701

    Article  PubMed  CAS  Google Scholar 

  • Brown AG (1981) Organization in the spinal cord. Springer, Berlin bHeidelberg New York

    Book  Google Scholar 

  • Büttner-Ennever JA (1992) Patterns of connectivity in the vestibular nuclei. In: Cohen B, Tomko DL, Guedry F (eds) Sensing and controlling motion. Vestibular and sensorimotor function. Ann NY Acad Sci 656: 363–378

    Google Scholar 

  • Chandler MJ, Zhang J, Qin C, Yuan Y, Foreman RD (2000) In-trapericardial injections of algogenic chemicals excite primate C1-C2 spinothalamic tract neurons. Am J Physiol Regul Integr Comp Physiol 279: R560–568

    PubMed  CAS  Google Scholar 

  • Clark FJ, Grigg P, Chapin JW (1989) The contribution of articular receptors to proprioception with the fingers in humans. J Neurophysiol 61:186

    PubMed  CAS  Google Scholar 

  • Craig AD, Heppelmann B, Schaible H-G (1988) The projections of the medial and posterior articular nerves of the cat’s knee to the spinal cord. J Comp Neurol 276: 279–288

    Article  PubMed  CAS  Google Scholar 

  • Dessem D, Luo P (1999) Jaw-muscle spindle afferent feedback to the cervical spinal cord in the rat. Exp Brain Res 128:451–459

    Article  PubMed  CAS  Google Scholar 

  • Donevan AH, Neuber-Hess M, Rose PK (1990) Multiplicity of vestibulospinal projections to the upper cervical spinal cord of the cat: a study with the anterograde tracer Phase-olus vulgaris leucoagglutinin. J Comp Neurol 302:1–14

    Article  PubMed  CAS  Google Scholar 

  • Dutia MB (1991) The muscles and joints of the neck: their specialization and role in head movement. Progr Neurobiol 37:165–178

    Article  CAS  Google Scholar 

  • Feil K, Herbert H (1995) Topographical organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kölliker-Fuse nuclei. J Comp Neurol 353: 506–528

    Article  PubMed  CAS  Google Scholar 

  • Florence SL, Jain N, Pospichal MW, Beck PD, Sly DL, Kaas JH (1996) Central reorganization of sensory pathways following peripheral nerve regeneration in fetal monkeys. Nature 381:69–71

    Article  PubMed  CAS  Google Scholar 

  • Foreman RD (2000) Integration of viscerosomatic sensory input at the spinal level. Prog Brain Res 122: 209–221

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC, McCloskey D, Burke D (1992) Kinaesthetic signals and muscle contraction. Trends Neurosci 15:62–65

    Article  PubMed  CAS  Google Scholar 

  • Ghez C (1991) The control of movement. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 3rd edn. Elsevier, New York, pp 533–547

    Google Scholar 

  • Handwerker HO (1999) Einführung in die Pathophysiologie des Schmerzes. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Hassenstein B (1988) Der Kopfgelenksbereich im Funktions-gefüge der Raumorientierung: systemtheoretische bzw. biokybernetische Gesichtspunkte. In: Wolff H-D (Hrsg) Die Sonderstellung des Kopfgelenksbereichs. Grundlagen, Klinik, Begutachtung. Springer, Berlin Heidelberg New York, S 1–17

    Chapter  Google Scholar 

  • Hellstrom F, Thunberg J, Bergenheim M, Sjolander P, Peder-sen J, Johansson H (2000) Elevated intramuscular concentration of bradykinin in jaw muscle increases the fusimotor drive to neck muscles in the cat. J Dent Res 79:1815–1822

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom F, Thunberg J, Bergenheim M, Sjolander P, Djupsjo-backa M, Johansson H (2002) Increased intra-articular concentration of bradykinin in the temporomandibular joint changes the sensitivity of muscle spindles in dorsal neck muscles in the cat. Neurosci Res 42: 91–99

    Article  PubMed  CAS  Google Scholar 

  • Holstege G (1987) Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260: 98–126

    Article  PubMed  CAS  Google Scholar 

  • Holzer P (1988) Local effector functions of capsaicin-sensi-tive nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24: 739–768

    Article  PubMed  CAS  Google Scholar 

  • Jänig W (1993) Biologie und Pathobiologie der Schmerzmechanismen. In: Zenz M, Jurna I (Hrsg) Lehrbuch der Schmerztherapie. WVG, Stuttgart, S 15–33

    Google Scholar 

  • Kleiss C, Kleiss E (1980) Zur Entwicklung der Muskelspindeln in der menschlichen Zunge. Anat Histol Embryol 9: 73–88

    Article  PubMed  CAS  Google Scholar 

  • Knese K-H (1949) Kopfgelenk, Kopfhaltung und Kopfbewegung des Menschen. Z Anat Entwickl Gesch 114: 67–107

    Article  Google Scholar 

  • Krammer EB, Lischka MF, Egger TP, Riedl M, Gruber H (1987) The motoneuronal organization of the spinal accessory nuclear complex. Adv Anat Embryol Cell Biol 103:1–62

    Article  PubMed  CAS  Google Scholar 

  • Kubik S, Manestar M (1975) The role of the suboccipital nerve in the sensory innervation of the occipital region. Oth Int Cong Anat Tokyo: 224A

    Google Scholar 

  • Loewy AD, Spyer KM (eds) (1990) Central regulation of autonomic functions. Oxford University Press, New York

    Google Scholar 

  • Maier A (1979) Occurrence and distribution of muscle spindles in masticatory and suprahyoid muscles of the rat. Am J Anat 155:483–506

    Article  PubMed  CAS  Google Scholar 

  • Marfurt CF, Rajchert DM (1991) trigeminal primary afferent projections to »non-trigeminal« areas of the rat central nervous system. J Comp Neurol 303:489–511

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Gao X, Yaginuma H (1995) Spinovestibular projections in the rat, with particular referenceto projections from the central cervical nucleus to the lateral vestibular nucleus. J Comp Neurol 361: 334–344

    Article  PubMed  CAS  Google Scholar 

  • Mense S (1993) Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54: 241–289

    Article  PubMed  CAS  Google Scholar 

  • Nazruddin SS, Shirana Y, Yamauchi K, Shigenaga Y (1989) The cells of origin of the hypoglossal afferent nerves and central projections in the cat. Brain Res 490: 219–235

    Article  PubMed  CAS  Google Scholar 

  • Neuhuber W (1994) Innerer Aufbau des Hirnstamms. In: Drenckhahn D, Zenker W (Hrsg) Benninghoff, Anatomie, Bd 2, 15. Aufl. Urban & Schwarzenberg, München, S 471–519

    Google Scholar 

  • Neuhuber W, Mysicka A (1980) Afferent neurons of the hypoglossal nerve of the rat as demonstrated by horseradish peroxidase tracing. Anat Embryol 158: 349–360

    Article  PubMed  CAS  Google Scholar 

  • Neuhuber WL, Fryscak-Benes A (1987) Die zentralen Projektionen afferenter Neurone des N. hypoglossus bei der Albinoratte. Verh Anat Ges 81: 981–983

    Google Scholar 

  • Neuhuber WL, Zenker W (1989) The central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal and upper thoracic spinal nuclei. J Comp Neurol 280: 231–253

    Article  PubMed  CAS  Google Scholar 

  • Neuhuber WL, Bankoul S (1992) Der «Halsteil» des Gleichgewichtsapparats — Verbindung zervikaler Rezeptoren zu Vestibulariskernen. Man Med 30: 53–57

    Google Scholar 

  • Neuhuber WL, Zenker W, Bankoul S (1990) Central projections of cervical primary afferents in the rat. Some general anatomical principles and their functional significance. In: Zenker W, Neuhuber WL (eds) The primary afferent neuron, Plenum Press, New York, pp 173–188

    Chapter  Google Scholar 

  • Nomura S, Mizuno N (1984) Central distribution of primary afferent fibers in the Arnold’s nerve (the auricular branch of the vagus nerve): a transganglionic HRP study in the cat. Brain Res 292:199–205

    Article  PubMed  CAS  Google Scholar 

  • Pfaller K, Arvidsson J (1988) Central distribution of trigeminal and upper cervical primary afferents in the rat studied by anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin. J Comp Neurol 268: 91–108

    Article  PubMed  CAS  Google Scholar 

  • Proske U, Schaible H-G, Schmidt RF (1988) Joint receptors and kinaesthesia. Exp Brain Res 72: 219–224

    Article  PubMed  CAS  Google Scholar 

  • Putz R (1994) Rumpf. In: Drenckhahn D, Zenker W (Hrsg) Ben-ninghoff, Anatomie, Bd 1, 15. Aufl. Urban & Schwarzen-berg, München, S 245–324

    Google Scholar 

  • Qin C, Chandler MJ, Miller KE, Foreman RD (2001) Responses and afferent pathways of superficial and deeper c(1)-c(2) spinal cells to intrapericardial algogenic chemicals in rats. J Neurophysiol 85:1522–1532

    PubMed  CAS  Google Scholar 

  • Richmond FJR, Bakker DA (1982) Anatomical organization and sensory receptor content of soft tissues surrounding upper cervical vertebrae in the cat. J Neurophysiol 48: 49–61

    PubMed  CAS  Google Scholar 

  • Schaible H-G, Grubb BD (1993) Afferent and spinal mechanisms of joint pain. Pain 55: 5–54

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H-M (1994) Kopf und Hals. In: Drenckhahn D, Zenker W (Hrsg) Benninghoff, Anatomie, Bd 1, 15. Aufl. Urban & Schwarzen berg, München, S 471–527

    Google Scholar 

  • Taylor JL (1992) Perception of the orientation of the head on the body in man. In: Berthoz A, Vidal PP, Graf W (eds) The head-neck sensory motor system. Oxford University Press, New York, pp 488–490

    Chapter  Google Scholar 

  • Taylor JL, McCloskey Dl (1988) Proprioception in the neck. Exp Brain Res 70: 351–360

    Article  PubMed  CAS  Google Scholar 

  • Thunberg J, Hellstrom F, Sjolander P, Bergenheim M, Wenngren B, Johansson H (2001) Influences on the fusi-motor-muscle spindle system from chemosensitive nerve endings in cervical facet joints in the cat: possible implications for whiplash induced disorders. Pain 91:1 5–22

    Google Scholar 

  • Voss H (1971) Tabelle der absoluten und relativen Muskelspindelzahlen der menschlichen Skelettmuskulatur. Anat Anz 129: 562–572

    PubMed  CAS  Google Scholar 

  • Willis WD jr, Coggeshall RE (1991) Sensory mechanisms of the spinal cord, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  • Wilson VJ (1992) Physiological properties and central actions of neck muscle spindles. In: Berthoz A, Vidal PP, Graf W (eds) The head-neck sensory motor system. Oxford University Press, New York, pp 175–178

    Chapter  Google Scholar 

  • Woolf CJ, Shortland P, Coggeshall RE (1992) Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355: 75–78

    Article  PubMed  CAS  Google Scholar 

  • Xiong G, Matsushita M (2001) Ipsilateral and contralateral projections from upper cervical segments to the vestibular nuclei in the rat. Exp Brain Res 141: 204–217

    Article  PubMed  CAS  Google Scholar 

  • Zenker W, Neuhuber W (1994) Autonomes (viszerales, vegetatives) Nervensystem. In: Drenckhahn D, Zenker W (Hrsg) Benninghoff, Anatomie, Bd 2, 15. Aufl. Urban & Schwarzenberg, München, S 628–647

    Google Scholar 

  • Zimmermann M (1993) Physiologische Grundlagen des Schmerzes und der Schmerztherapie. In: Zenz M, Jurna I (Hrsg) Lehrbuch der Schmerztherapie. WVG, Stuttgart, S 3–13

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Neuhuber, W.L. (2005). Funktionelle Neuroanatomie des kraniozervikalen Übergangs. In: Hülse, M., Neuhuber, W., Wolff, HD. (eds) Die obere Halswirbelsäule. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28250-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-28250-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25605-2

  • Online ISBN: 978-3-540-28250-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics