Skip to main content

A Lattice Algebraic Approach to Neural Computation

  • Chapter
Book cover Handbook of Geometric Computing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ritter GX, Sussner P, Diaz de Leon JL (1998) Morphological associative memories. IEEE Trans. on Neural Networks 9(2):281–293

    Article  Google Scholar 

  2. Ritter GX, Diaz de Leon JL, Sussner P (1999) Morphological bidirectional associative memories. Neural Networks 12:851–867

    Article  Google Scholar 

  3. Ritter GX, Urcid G, Iancu L (2003) Reconstruction of noisy patterns using morphological associative memories. J. of Mathematical Imaging and Vision 19(2):95–111

    Article  MathSciNet  MATH  Google Scholar 

  4. Graa M, Raducanu B (2001) On the application of morphological heteroassociative neural networks. In: Proc. of Intern. Conf. on Image Processing ICIP’01, Thessaloniki, Greece, pp. 501–504

    Google Scholar 

  5. Sussner P (2003) Generalizing operations of binary autoassociative morphological memories using fuzzy set theory. J. of Mathematical Imaging and Vision 19(2):81–93

    Article  MATH  MathSciNet  Google Scholar 

  6. Khabou MA, Gader PD, Keller JM (2000) LADAR target detection using morphological shared-weight neural networks. Machine Vision and Applications 11(6):300–305

    Article  Google Scholar 

  7. Won Y, Gader PD, Coffield PC (1997) Morphological shared-weight networks with applications to automatic target recognition. IEEE Trans. on Neural Networks 8(5):1195–1203

    Article  Google Scholar 

  8. Gader PD, Won Y, Khabou MA (1994) Image algebra networks for pattern classification. In: Dougherty ER, Gader PD, Schmitt M (eds) Image Algebra and Morphological Image Processing V. San Diego, California, pp. 157–168

    Google Scholar 

  9. Pessoa LFC, Maragos P (2000) Neural networks with hybrid morphological/rank/linear nodes: a unifying framework with applications to handwritten character recognition. Pattern Recognition 33(6):945–960

    Article  Google Scholar 

  10. Simpson PK (1992) Fuzzy min-max neural networks. 1. Classification. IEEE Trans. on Neural Networks 3:776–786

    Article  Google Scholar 

  11. Simpson PK (1993) Fuzzy min-max neural networks. 2. Clustering. IEEE Trans. on Neural Networks 4:32–45

    Google Scholar 

  12. Zhang X, Hang CC, Tan S, Wang PZ (1996) The min-max function differentiation and training of fuzzy neural networks. IEEE Trans. on Neural Networks 7(5):1139–1150

    Article  Google Scholar 

  13. Ritter GX, Urcid G (2003) Lattice algebra approach to single neuron computation. IEEE Trans. on Neural Networks 14(2):282–295

    Article  MathSciNet  Google Scholar 

  14. Ritter GX, Iancu L, Urcid G (2003) Morphological perceptrons with dendritic structure. In: Proc. of IEEE Intern. Conf. on Fuzzy Systems FUZZ-IEEE’03, St. Louis, Missouri, pp. 1296–1301

    Google Scholar 

  15. Petridis V, Kaburlasos VG (1998) Fuzzy lattice neural network (FLNN): a hybrid model for learning. IEEE Trans. on Neural Networks 9:877–890

    Article  Google Scholar 

  16. Kaburlasos VG (2003) Improved fuzzy lattice neurocomputing (FLN) for semantic neural computing. In: Proc. of Intern. Joint Conf. on Neural Networks IJCNN’03, Portland, Oregon, pp. 1850–1855

    Google Scholar 

  17. Armstrong WW, Thomas MM (1996) Adaptive logic networks. In: Fiesler E, Beale R (eds) Handbook of Neural Computation. Oxford University, Oxford C1.8:1–14

    Google Scholar 

  18. Birkhoff G (1984) Lattice Theory. American Mathematical Society, Providence, Rhode Island

    Google Scholar 

  19. Shimbel A (1954) Structure in communication nets. In: Proc. of Symposium on Information Networks. Polytechnic Institute of Brooklyn, New York, pp. 119–203

    Google Scholar 

  20. Cuninghame-Green RA (1960) Process synchronization in steelworks—a problem of feasibility. In: Banbury, Maitland (eds) Proc. of 2nd Intern. Conf. on Operations Research. English University, London, pp. 323–328

    Google Scholar 

  21. Cuninghame-Green RA (1962) Describing industrial processes with interference and approximating their steady-state behaviour. Oper. Research Quart. 13:95–100

    Article  Google Scholar 

  22. Giffler B (1960) Mathematical Solution of Production Planning and Scheduling Problems. Tech. Rep., IBM ASDD, Yorktown Heights, NY

    Google Scholar 

  23. Peteanu V (1967) An algebra of the optimal path in networks. Mathematica 9:335–342

    MATH  MathSciNet  Google Scholar 

  24. Benzaken C (1968) Structures algébra des cheminements. In: Biorci G (ed) Network and Switching Theory. Academic, New York Boston, pp. 40–57

    Google Scholar 

  25. Carré B (1971) An algebra for network routing problems. J. Inst. Math. Appl. 7:273–294

    MATH  MathSciNet  Google Scholar 

  26. Backhouse RC, Carré B (1975) Regular algebra applied to path-finding problems. J. Inst. Math. Appl. 15:161–186

    MathSciNet  MATH  Google Scholar 

  27. Cuninghame-Green RA (1979) Minimax Algebra: Lecture Notes in Economics and Mathematical Systems 166. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  28. Ritter GX, Davidson JL (1987) The Image Algebra and Lattice Theory. Tech. Rep. TR 87-09. University of Florida CIS Dept., Gainesville, Florida

    Google Scholar 

  29. Davidson JL (1989) Lattice Structures in the Image Algebra and Applications to Image Processing. PhD Thesis, University of Florida, Gainesville, Florida

    Google Scholar 

  30. Kohonen T (1972) Correlation matrix memory. IEEE Trans. on Computers C-21:353–359

    Article  Google Scholar 

  31. Ritter GX, Sussner P (1997) Associative memories based on lattice algebra. In: Proc. of IEEE Intern. Conf. on Systems, Man, and Cybernetics, Orlando, Florida, pp. 3570–3575

    Google Scholar 

  32. McEliece R, et al. (1987) The capacity of Hopfield associative memory. Trans. Information Theory 1:33–45

    Google Scholar 

  33. Palm G (1980) On associative memory. Biological Cybernetics 36:19–31

    Article  MATH  Google Scholar 

  34. Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic associative memories. Nature 222:960–962

    Google Scholar 

  35. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. In: Proc. of National Academy of Sciences, USA, 79:2554–2558

    MathSciNet  Google Scholar 

  36. Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two state neurons. In: Proc. of National Academy of Sciences, USA, 81:3088–3092

    Google Scholar 

  37. Hopfield JJ, Tank DW (1986) Computing with neural circuits. Science 233:625–633

    Google Scholar 

  38. Abu-Mostafa Y, St. Jacques J (1985) Information capacity of the Hopfield model. IEEE Trans. on Information Theory 7:1–11

    Google Scholar 

  39. Chen HH, et al. (1986) Higher order correlation model for associative memories. In: Denker JS (ed) Neural Networks for Computing. AIP Proceedings 151:398–403

    Google Scholar 

  40. Denker JS (1986) Neural network models of learning and adaption. Physica 22D:216–222

    MathSciNet  Google Scholar 

  41. Gimenez-Martinez V (2000) A modified Hopfield autoassociative memory with improved capacity. IEEE Trans. on Neural Networks 11(4):867–878

    Article  Google Scholar 

  42. Keeler JD (1986) Basins of attraction of neural network models. In: Denker JS (ed) Neural Networks for Computing. AIP Proceedings 151:259–265

    Google Scholar 

  43. Kosko B (1987) Adaptive bidirectional associative memories. IEEE Trans. Systems, Man, and Cybernetics pp. 124–136

    Google Scholar 

  44. Li WJ, Lee T (2001) Hopfield neural networks for affine invariant matching. IEEE Trans. on Neural Networks 12(6): 1400–1410

    Article  Google Scholar 

  45. Munehisa T, Kobayashi M, Yamazaki H (2001) Cooperative updating in the Hopfield model. IEEE Trans. on Neural Networks 12(5):1243–1251

    Article  Google Scholar 

  46. Akyama MT, Kikuti M (2001) Recognition of character using morphological associative memory. In: Proc. of 14th Brazilian Symposium on Computer Graphics and Image Processing, Florianópolis, Brazil, p. 400

    Google Scholar 

  47. Annovi A, Bagliesi MG, et al. (2001) A pipeline of associative memory boards for track finding. IEEE Trans. on Nuclear Science 48(3) Part 1:595–600

    Article  Google Scholar 

  48. Kung SY, Zhang X (2001) An associative memory approach to blind signal recovery for SIMO/MIMO systems. In: Proc. of 2001 IEEE Signal Processing Society Workshop. Neural Networks for Signal Processing XI:343–362

    Google Scholar 

  49. Matsuda S (2001) Theoretical limitations of a Hopfield network for crossbar switching. IEEE Trans. on Neural Networks 12(3):456–462

    Article  Google Scholar 

  50. Mihu IZ, Brad R, Breazu M (2001) Specifications and FPGA implementation of a systolic Hopfield-type associative memory. In: Proc. of Intern. Joint Conference on Neural Networks IJCNN’01 1:228–233

    Google Scholar 

  51. Sussner P (2000) Observations on morphological associative memories and the kernel method. Elsevier Neurocomputing 31:167–183

    Article  Google Scholar 

  52. Eccles JC (1977) The Understanding of the Brain. McGraw-Hill, New York

    Google Scholar 

  53. Koch C, Segev I (eds) (1989) Methods in Neuronal Modeling: From Synapses to Networks. MIT, Boston

    Google Scholar 

  54. Segev I (1998) Dendritic processing. In: Arbib M (ed) The Handbook of Brain Theory and Neural Networks. MIT, Boston, pp. 282–289

    Google Scholar 

  55. Arbib MA (ed) (1998) The Handbook of Brain Theory and Neural Networks. MIT, Boston

    Google Scholar 

  56. Holmes WR, Rall W (1992) Electronic models of neuron dendrites and single neuron computation. In: McKenna T, Davis J, Zornetzer SF (eds) Single Neuron Computation. Academic, San Diego, California, pp. 7–25

    Google Scholar 

  57. McKenna T, Davis J, Zornetzer SF (eds) (1992) Single Neuron Computation. Academic, San Diego, California

    MATH  Google Scholar 

  58. Mel BW (1993) Synaptic integration in excitable dendritic trees. J. of Neurophysiology 70:1086–1101

    Google Scholar 

  59. Rall W, Segev I (1987) Functional possibilities for synapses on dendrites and dendritic spines. In: Edelman GM, Gall EE, Cowan WM (eds) Synaptic Function. Wiley, New York, pp. 605–636

    Google Scholar 

  60. Shepherd GM (1992) Canonical neurons and their computational organization. In: McKenna T, Davis J, Zornetzer SF (eds) Single Neuron Computation. Academic, San Diego, California, pp. 27–55

    Google Scholar 

  61. Gori M, Scarselli F (1998) Are multilayer perceptrons adequate for pattern recognition and verification? IEEE Trans. on Pattern Analysis and Machine Intelligence 20(11):1121–1132

    Article  Google Scholar 

  62. Ritter GX, Iancu L (2003) Morphological perceptrons. Submitted to IEEE Trans. on Neural Networks

    Google Scholar 

  63. Ritter GX, Iancu L (2003) Single layer feedforward neural network based on lattice algebra. In: Proc. of Intern. Joint Conf. on Neural Networks IJCNN’03, Portland, Oregon, pp. 2887–2892

    Google Scholar 

  64. Ritter GX, Iancu L (2003) Lattice algebra approach to neural networks and pattern classification. In: Proc. of 6th Open German-Russian Workshop on Pattern Recognition and Image Understanding, Katun Village, Altai Region, Russian Federation, pp. 18–21

    Google Scholar 

  65. Wasnikar VA, Kulkarni AD (2000) Data mining with radial basis functions. In: Dagli CH, et al. (eds) Intelligent Engineering Systems Through Artificial Neural Networks. ASME, New York, 10:443–448

    Google Scholar 

  66. Ritter GX, Iancu L, Urcid G (2003) Neurons, dendrites, and pattern classification. In: Proc. of 8th Ibero-American Congress on Pattern Recognition CIARP’03, Havana, Cuba, pp. 1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ritter, G.X., Iancu, L. (2005). A Lattice Algebraic Approach to Neural Computation. In: Handbook of Geometric Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28247-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-28247-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20595-1

  • Online ISBN: 978-3-540-28247-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics