Skip to main content

Symbiosis between Non-Related Bacteria in Phototrophic Consortia

  • Chapter
Molecular Basis of Symbiosis

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 41))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abella CA, Cristina XP, Martinez A, Pibernat I, Vila X (1998) Two new motile phototrophic consortia: “Chlorochromatium lunatum” and “Pelochromatium selenoides”. Arch Microbiol 169:452–459

    Article  CAS  PubMed  Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. Van Stockum and Zoon, The Hague, The Netherlands

    Google Scholar 

  • Bassler BL (2002) Small talk: cell-to-cell communication in bacteria. Cell 109:421–424

    Article  CAS  PubMed  Google Scholar 

  • Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045

    CAS  PubMed  Google Scholar 

  • Beijerinck MW (1913) De infusies en de ontdekking der backteriën, Jaarboek van de Koninklijke Akademie v. Wetenschappen. Müller, Amsterdam, The Netherlands

    Google Scholar 

  • Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20:193–219

    Article  CAS  PubMed  Google Scholar 

  • Blackburn N, Fenchel T, Mitchell J (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282:2254–2256

    Article  CAS  PubMed  Google Scholar 

  • Caldwell DE, Tiedje JM (1975) A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes. Can J Microbiol 21:362–376

    CAS  PubMed  Google Scholar 

  • Conrad R, Phelps TJ, Zeikus JG (1985) Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 50:595–601

    CAS  PubMed  Google Scholar 

  • Croome RL, Tyler PA (1984) Microbial microstratification and crepuscular photosynthesis in meromictic Tasmanian lakes. Verh Int Verein Limnol 22:1216–1223

    CAS  Google Scholar 

  • Culver DA, Brunskill GJ (1969) Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake. Limnol Oceanogr 14:862–873

    CAS  Google Scholar 

  • Czeczuga B, Gradski F (1972) Relationship between extracellular and cellular production in the sulphuric green bacterium Chlorobium limicola Nds. as compared to primary production of phytoplankton. Hydrobiologia 42:85–95

    Google Scholar 

  • Dubinina GA, Kuznetsov SI (1976) The ecological and morphological characteristics of microorganisms in Lesnaya Lamba (Karelia). Int Rev Ges Hydrobiol 61:1–19

    Google Scholar 

  • Eisen JA et al (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514

    Article  CAS  PubMed  Google Scholar 

  • Evans MCW, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55:928–934

    CAS  PubMed  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  CAS  PubMed  Google Scholar 

  • Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature 400:828

    Article  CAS  Google Scholar 

  • Fröstl J, Overmann J (1998) Physiology and tactic response of “Chlorochromatium aggregatum”. Arch Microbiol 169:129–135

    Article  PubMed  Google Scholar 

  • Fröstl J, Overmann J (2000) Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch Microbiol 174:50–58

    Article  PubMed  Google Scholar 

  • Gasol JM, Jürgens K, Massana R, Calderón-Paz JI, Pedrós-Alió C (1995) Mass development of Daphnia pulex in a sulfide-rich pond (Lake Cisó). Arch Hydrobiol 132:279–296

    Google Scholar 

  • Glaeser J, Overmann J (2003a) Characterization and in situ carbon metabolism of phototrophic consortia. Appl Environ Microbiol 69:3739–3750

    Article  CAS  PubMed  Google Scholar 

  • Glaeser J, Overmann J (2003b) The significance of organic carbon compounds for in situ metabolism and chemotaxis of phototrophic consortia. Environ Microbiol 5:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Glaeser J, Overmann J (2004) Biogeography, evolution and diversity of the epibionts in phototrophic consortia. Appl Environ Microbiol 70(8):4821–4830

    Article  CAS  PubMed  Google Scholar 

  • Glaeser J, Baneras L, Rütters H, Overmann J (2002) Novel bacteriochlorophyll e structures and species-specific variability of pigment composition in green sulfur bacteria. Arch Microbiol 177:475–485

    Article  CAS  PubMed  Google Scholar 

  • Gorlenko VM, Kuznetzov SI (1972) Vertical distribution of phototrophic bacteria in the Kononér Lake of the Mari ASSR. Microbiol 40:651–652

    Google Scholar 

  • Grossart H-P, Riemann L, Azam F (2001) Bacterial motility in the sea and its ecological implications. Aquat Microb Ecol 25:247–258

    Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Jacobi CA, Aßmus B, Reichenbach H, Stackebrandt E (1997) Molecular evidence for association between the Sphingobacterium-like organism “Candidatus comitans” and the Myxobacterium Chondromyces crocatus. Appl Environ Microbiol 63:719–723

    CAS  PubMed  Google Scholar 

  • Jørgensen BB (2001) Life in the diffusive boundary layer. In: Boudreau BP, Jørgensen BB (eds) The Benthic boundary layer: transport processes and biogeochemistry, chap 14. Oxford Univ Press, Oxford, pp 348–373

    Google Scholar 

  • Kanzler B, Pfannes KR, Vogl K, Overmann J (2005) Molecular characterization of the non-photosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl Environ Microbiol 71:7434–7441

    Article  CAS  PubMed  Google Scholar 

  • Koch A (1996) What size should a bacterium be? A question of scale. Annu Rev Microbiol 50:317–348

    Article  CAS  PubMed  Google Scholar 

  • Krembs C, Juhl AR, Long RA, Azam F (1998) Nanoscale patchiness of bacteria in lake water studied with the spatial information preservation method. Limnol Oceangr 43:307–314

    Article  Google Scholar 

  • Lauterborn R (1906) Zur Kenntnis der sapropelischen Flora. Allg Bot 2:196–197

    Google Scholar 

  • Ochmann H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:1096–1099

    Article  Google Scholar 

  • Overmann J (2001a) Green sulfur bacteria. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 601–623

    Google Scholar 

  • Overmann J (2001b) Phototrophic consortia: a tight cooperation between non-related eubacteria. In: Seckbach J (ed) Symbiosis. Mechanisms and model systems. Kluwer Academic Publ, Dordrecht, pp 239–255

    Google Scholar 

  • Overmann J, Schubert K (2002) Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177:201–208

    Article  CAS  PubMed  Google Scholar 

  • Overmann J, Lehmann S, Pfennig N (1991) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (Green sulfur bacteria). Arch Microbiol 157:29–37

    Article  CAS  Google Scholar 

  • Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 32:150–155

    Article  Google Scholar 

  • Overmann J, Beatty JT, Hall KJ (1994) Photosynthetic activity and population dynamics of Amoebobacter purpureus in a meromictic saline lake. FEMS Microbiol Ecol 15:309–320

    CAS  Google Scholar 

  • Overmann J, Tuschak C, Fröstl J, Sass H (1998) The ecological niche of the consortium “Pelochromatium roseum” Arch Microbiol 169:120–128

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247

    Article  PubMed  Google Scholar 

  • Perfiliev BV (1914) On the theory of symbiosis of Chlorochromatium aggregatum Lauterb. (Chloronium mirabile Buder) and Cylindrogloea bacterifera nov. gen., nov. spec. (in Russian). I Mikrobiol Petrogr 1:222–225

    Google Scholar 

  • Pfennig N (1980) Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria: a review. In: Gottschalk G, Pfennig N, Werner (eds) Anaerobes and anaerobic infections. Fischer, Stuttgart, pp 127–131

    Google Scholar 

  • Reichenbach H, Dworkin M (1992) The myxobacteria. In: Trüper HG, Balows A, Dworkin M, Harder W, Schleifer K-H (eds) The Prokaryotes. Springer, Berlin Heidelberg New York, pp 3416–3487

    Google Scholar 

  • Rudolph C, Wanner G, Huber R (2001) Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearl like morphology. Appl Environ Microbiol 67:2336–2344

    Article  CAS  PubMed  Google Scholar 

  • Schink B (1991) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 276–299

    Google Scholar 

  • Sirevåg R, Ormerod J (1970) Carbon dioxide-fixation in photosynthettic green sulfur bacteria. Science 169:186–188

    PubMed  Google Scholar 

  • Skuja H (1957) Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova Acta Reg Soc Sci Upsala Ser IV(16):1–404

    Google Scholar 

  • Smith DC, Simon M, Alldredge AL, Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–142

    Article  CAS  Google Scholar 

  • Staley JT (1999) Bacterial biodiversity: a time for place. ASM News 65:681–687

    Google Scholar 

  • Tonolla M, Demarta A, Peduzzi S, Hahn D, Peduzzi R (2000) In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno. Appl Environ Microbiol 66:820–824

    Article  CAS  PubMed  Google Scholar 

  • Trüper HG, Pfennig N (1971) Family of phototrophic Green Sulfur Bacteria: Chlorobiaceae Copeland, the correct family name; rejection of Chlorobacterium Lauterborn; and the taxonomic situation of the consortium-forming species. Int J Syst Bacteriol 21:8–10

    Article  Google Scholar 

  • Tuschak C, Glaeser J, Overmann J (1999) Specific detection of green sulfur bacteria by in situ hybridization with a fluorescently labeled oligonucleotide probe. Arch Microbiol 171:265–272

    Article  CAS  PubMed  Google Scholar 

  • Vogl K, Glaeser J, Pfannes K, Wanner G, Overmann J (2005) Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum” (submitted)

    Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Overmann, J. (2005). Symbiosis between Non-Related Bacteria in Phototrophic Consortia. In: Overmann, J. (eds) Molecular Basis of Symbiosis. Progress in Molecular and Subcellular Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28221-1_2

Download citation

Publish with us

Policies and ethics