Skip to main content

Part of the book series: The Mycota ((MYCOTA,volume 1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aist JR (1969) The mitotic apparatus in fungi, Ceratocystis fagacearum and Fusarium oxysporum. J Cell Biol 40:120–135

    Article  PubMed  CAS  Google Scholar 

  • Aist JR (2002) Mitosis and motor proteins in the filamentous ascomycete, Nectria haematococca, and some related fungi. Int Rev Cytol 212:239–263

    Article  PubMed  CAS  Google Scholar 

  • Aist JR, Bayles CJ (1991) Ultrastructural basis of mitosis in the fungus Nectria haematococca (sexual stage of Fusarium solani) II. Spindles. Protoplasma 161:123–136

    Article  Google Scholar 

  • Aist JR, Morris NR (1999) Mitosis in filamentous fungi: how we got where we are. Fungal Genet Biol 27:1–25

    Article  PubMed  CAS  Google Scholar 

  • Bergen LG, Morris NR (1983) Kinetics of the nuclear division cycle of Aspergillus nidulans. J Bacteriol 156:155–160

    PubMed  CAS  Google Scholar 

  • Bistis GN, Perkins DD, Read ND (2003) Different cell types in Neurospora crassa. Fungal Genet Newslett 50:17–19

    Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N et al. (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    Article  PubMed  CAS  Google Scholar 

  • Bruno KS, Morrell JL, Hamer JE, Staiger CJ (2001) SEPH, a Cdc7p orthologue from Aspergillus nidulans, functions upstream of actin ring formation during cytokinesis. Mol Microbiol 42:3–12

    Article  PubMed  CAS  Google Scholar 

  • Bruschi GC, de Souza CC, Fagundes MR, Dani MA, Goldman, MH, Goldman GH (2001) Sensitivity to camptothecin in Aspergillus nidulans identifies a novel gene, scaA +, related to the cellular DNA damage response. Mol Genet Genomics 265:264–275

    Article  PubMed  CAS  Google Scholar 

  • Clutterbuck AJ (1970) Synchronous nuclear division and septation in Aspergillus nidulans. J Gen Microbiol 60:133–135

    PubMed  CAS  Google Scholar 

  • Cross FR (2003) Two redundant oscillatory mechanisms in the yeast cell cycle. Dev Cell 4:741–752

    Article  PubMed  CAS  Google Scholar 

  • Demeter J, Lee SE, Haber JE, Stearns T (2000) The DNA damage checkpoint signal in budding yeast is nuclear limited. Mol Cell 6:487–492

    Article  PubMed  CAS  Google Scholar 

  • De Souza CP, Ye XS, Osmani SA (1999) Checkpoint defects leading to premature mitosis also cause endoreduplication of DNA in Aspergillus nidulans. Mol Biol Cell 10:3661–3674

    PubMed  Google Scholar 

  • De Souza CP, Osmani AH, Wu LP, Spotts JL, Osmani SA (2000) Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell 102:293–302

    Article  PubMed  Google Scholar 

  • De Souza CP, Horn KP, Masker K, Osmani SA (2003) The SONB (Nup98) nucleoporin interacts with the NIMA kinase in Aspergillus nidulans. Genetics 165:1071–1081

    PubMed  Google Scholar 

  • De Souza CP, Osmani AH, Hashmi SB, Osmani SA (2004) Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr Biol 14:1973–1984

    Article  PubMed  CAS  Google Scholar 

  • Doonan JH, Morris NR (1989) The bimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homolog of mammalian phosphoprotein phosphatase I. Cell 57:987–996

    Article  PubMed  CAS  Google Scholar 

  • Dou X, Wu D, An W, Davies J, Hashmi SB, Ukil L, Osmani SA (2003) The PHOA and PHOB cyclin-dependent kinases perform an essential function in Aspergillus nidulans. Genetics 165:1105–1115

    PubMed  CAS  Google Scholar 

  • Dynesen J, Nielsen J (2003) Branching is coordinated with mitosis in growing hyphae of Aspergillus nidulans. Fungal Genet Biol 40:15–24

    Article  PubMed  CAS  Google Scholar 

  • Efimov V, Morris NR (1998) A screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis. Genetics 149:101–116

    PubMed  CAS  Google Scholar 

  • Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672

    Article  PubMed  CAS  Google Scholar 

  • Enos AP, Morris NR (1990) Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 23:1019–1027

    Article  Google Scholar 

  • Fagundes MR, Lima JF, Savoldi M, Malavazi I, Larson RE, Goldman MH, Goldman GH (2004) The Aspergillus nidulans npkA gene encodes a Cdc2-related kinase that genetically interacts with the UvsBATR kinase. Genetics 167:1629–1641

    Article  PubMed  CAS  Google Scholar 

  • Fiddy C, Trinci APJ (1976) Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. J Gen Microbiol 97:169–184

    PubMed  CAS  Google Scholar 

  • Fox H, Hickey PC, Fernandez-Abalos JM, Lunness P, Read ND, Doonan JH (2002) Dynamic distribution of BIMGPP1 in living hyphae of Aspergillus indicates a novel role in septum formation. Mol Microbiol 45:1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Muse T, Steinberg G, Perez-Martin J (2004) Characterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity. J Cell Sci 117:487–506

    Article  PubMed  CAS  Google Scholar 

  • Gladfelter AS, Pringle JR, Lew DJ (2001) The septin cortex at the yeast mother-bud neck. Curr Opin Microbiol 4:681–689

    Article  PubMed  CAS  Google Scholar 

  • Grallert A, Krapp A, Bagley S, Simanis V, Hagan IM (2004) Recruitment of NIMA kinase shows that maturation of the S. pombe spindle-pole body occurs over consecutive cell cycles and reveals a role for NIMA in modulating SIN activity. Genes Dev 18:1007–1021

    Article  PubMed  CAS  Google Scholar 

  • Harris SD (1997) The duplication cycle in Aspergillus nidulans. Fungal Genet Biol 22:1–12

    Article  PubMed  CAS  Google Scholar 

  • Harris SD (2001) Septum formation in Aspergillus nidulans. Curr Opin Microbiol 4:736–739

    Article  PubMed  CAS  Google Scholar 

  • Harris SD, Kraus PR (1998) Regulation of septum formation in Aspergillus nidulans by a DNA damage checkpoint pathway. Genetics 148:1055–1067

    PubMed  CAS  Google Scholar 

  • Heath IB (1994) The cytoskeleton in hyphal growth, organelle movement, and mitosis. In: Wessels JGH, Meinhardt F (eds) The Mycota, vol I. Growth, differentiation, and sexuality. Springer, Berlin Heideberg New York, pp 43–65

    Google Scholar 

  • Hofmann AF, Harris SD (2000) The Aspergillus nidulans uvsB gene encodes an ATM-related kinase required for multiple facets of the DNA damage response. Genetics 154:1577–1586

    PubMed  CAS  Google Scholar 

  • Inoue S, Yoder OC, Turgeon BG, Aist JR (1998a) A cytoplasmic dynein required formitotic aster formation in vivo. J Cell Sci 111:2607–2614

    PubMed  CAS  Google Scholar 

  • Inoue S, Turgeon BG, Yoder OC, Aist JR (1998b) Role of fungal dynein in hyphal growth, microtubule organization, spindle pole body motility and nuclear migration. J Cell Sci 111:1555–1566

    PubMed  CAS  Google Scholar 

  • Iwasa M, Tanabe S, Kamada T (1998) The two nuclei in the dikaryon of the homobasidiomycete Coprinus cinereus change position after each conjugate division. Fungal Genet Biol 23:110–116

    Article  PubMed  Google Scholar 

  • Jung MK, Prigozhina N, Oakley CE, Nogales E, Oakley BR (2001) Alanine-scanning mutagenesis of Aspergillus gamma-tubulin yields diverse and novel phenotypes. Mol Biol Cell 12:119–136

    Google Scholar 

  • King SB, Alexander LJ (1969) Nuclear behavior, septation, and hyphal growth of Alternaria solani. Am J Bot 56:249–253

    Article  Google Scholar 

  • Kraus PR, Harris SD (2001) The Aspergillus nidulans snt genes are required for the regulation of septum formation and cell cycle checkpoints. Genetics 159:557–569

    PubMed  CAS  Google Scholar 

  • Lew DJ, Burke DJ (2003) The spindle assembly and spindle position checkpoints. Annu Rev Genet 37:251–282

    Article  PubMed  CAS  Google Scholar 

  • Lew DJ, Weinert T, Pringle JR (1997) Cell cycle control in Saccharomyces cerevisiae. In: Pringle JR, Broach JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces. Cell cycle and cell biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 607–695

    Google Scholar 

  • Lies CM, Cheng J, James SW, Morris NR, O’Connell MJ, Mirabito PM (1998) BIMAAPC, a component of the Aspergillus anaphase promoting complex/cyclosome, is required for a G2 checkpoint blocking entry into mitosis in the absence of NIMA function. J Cell Sci 111:1453–1465

    PubMed  CAS  Google Scholar 

  • MacNeill SA (1994) Cell cycle control in yeast. In: Wessels JGH, Meinhardt F (eds) The Mycota, vol I. Growth, differentiation, and sexuality. Springer, Berlin Heidelberg New York, pp 3–23

    Google Scholar 

  • Momany M (2002) Polarity in filamentous fungi: establishment, maintenance and new axes. Curr Opin Microbiol 5:580–585

    Article  PubMed  CAS  Google Scholar 

  • Momany M, Hamer JE (1997) Relationship of actin, microtubules, and crosswall synthesis during septation in Aspergillus nidulans. Cell Motil Cytoskeleton 38:373–384

    Article  PubMed  CAS  Google Scholar 

  • Morris NR (1976) Mitotic mutants of Aspergillus nidulans. Genet Res Camb 26:237–254

    Google Scholar 

  • Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116:221–234

    Article  PubMed  CAS  Google Scholar 

  • Murray AW, Hunt T (1993) The cell cycle: an introduction. Freeman, New York

    Google Scholar 

  • Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100:71–78

    Article  PubMed  CAS  Google Scholar 

  • Oakley BR, Akkari YN (1999) Gamma-tubulin at ten: progress and prospects. Cell Struct Funct 24:365–372

    Article  PubMed  CAS  Google Scholar 

  • Oakley CE, Oakley BR (1989) Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338:662–664

    Article  PubMed  CAS  Google Scholar 

  • Oakley BR, Oakley CE, Yoon Y, Jung MK (1990) Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61:1289–1301

    Article  PubMed  CAS  Google Scholar 

  • O’Connell MJ, Osmani AH, Morris NR, Osmani SA (1992) An extra copy of nimE cyclinB elevates pre-MPF levels and partially suppresses mutation of nimT cdc25 in Aspergillus nidulans. EMBO J 11:2139–2149

    PubMed  CAS  Google Scholar 

  • O’Connell MJ, Meluh PB, Rose MD, Morris NR (1993) Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesinlike protein in Aspergillus nidulans. J Cell Biol 120:153–162

    Article  PubMed  CAS  Google Scholar 

  • O’Connell MJ, Norbury C, Nurse P (1994) Premature chromatin condensation upon accumulation of NIMA. EMBO J 13:4926–4937

    PubMed  CAS  Google Scholar 

  • O’Connell MJ, Krien MJ, Hunter T (2003) Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 13:221–228

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell KL, Osmani AH, Osmani SA, Morris SA (1991) bimAencodes amember of the tetratricopeptide repeat family of proteins and is required for the completion of mitosis in Aspergillus nidulans. J Cell Sci 99:711–719

    PubMed  CAS  Google Scholar 

  • Osmani SA, Ye X (1996) Cell cycle regulation in Aspergillus by two protein kinases. Biochem J 317:633–641

    PubMed  CAS  Google Scholar 

  • Osmani SA, May GS, Morris NR (1987) Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans. J Cell Biol 104:1495–1504

    Article  PubMed  CAS  Google Scholar 

  • Osmani SA, Pu RT, Morris NR (1988a) Mitotic induction and maintenance by over-expression of a G2-specific gene that encodes a potential protein kinase. Cell 53:237–244

    Article  PubMed  CAS  Google Scholar 

  • Osmani SA, Engle DB, Doonan JH, Morris NR (1988b) Spindle formation and chromatin condensation in cells blocked at interphase by mutation of a negative cell cycle control gene. Cell 52:241–251

    Article  PubMed  CAS  Google Scholar 

  • Osmani AH, McGuire SL, Osmani SA (1991) Parallel activation of the NIMA and p34cdc2 cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans. Cell 67:283–291

    Article  PubMed  CAS  Google Scholar 

  • Osmani AH, van Peij N, Mischke M, O’Connell MJ, Osmani SA (1994) A single p34cdc2 protein kinase (nimX cdc2) is required at G1 and G2 in Aspergillus nidulans. J Cell Sci 107:1519–1528

    PubMed  CAS  Google Scholar 

  • Osmani AH, Davies J, Oakley CE, Oakley BR, Osmani SA (2003) TINA interacts with the NIMA kinase in Aspergillus nidulans and negatively regulates astral microtubules during metaphase arrest. Mol Biol Cell 14:3169–3179

    Article  PubMed  CAS  Google Scholar 

  • Ovechkina Y, Maddox P, Oakley CE, Xiang X, Osmani SA, Salmon ED, Oakley BR (2003) Spindle formation in Aspergillus is coupled to tubulin movement into the nucleus. Mol Biol Cell 14:2192–2200

    Article  PubMed  CAS  Google Scholar 

  • Pereira G, Schiebel E (2001) The role of the yeast spindle pole body and the mammalian centrosome in regulating late mitotic events. Curr Opin Cell Biol 13:762–769

    Article  PubMed  CAS  Google Scholar 

  • Pitt CW, Moreau E, Lunness PA, Doonan JH (2004) The pot1 + homologue in Aspergillus nidulans is required for ordering late mitotic events. J Cell Sci 117:199–209

    Article  PubMed  CAS  Google Scholar 

  • Prigozhina NL, Oakley CE, Lewis AM, Nayak T, Osmani SA, Oakley BR (2004) gamma-tubulin plays an essential role in the coordination of mitotic events. Mol Biol Cell 15:1374–1386

    Article  PubMed  CAS  Google Scholar 

  • Pu RT, Osmani SA (1995) Mitotic destruction of the cell cycle regulated NIMA protein kinase of Aspergillus nidulans is required for mitotic exit. EMBO J 14:995–1003

    PubMed  CAS  Google Scholar 

  • Pu RT, Xu G, Wu L, Vierula J, O’Donnell K, Ye XS, Osmani SA (1995) Isolationof a functional homolog of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans and functional analysis of conserved residues. J Biol Chem 270:18110–18116

    Article  PubMed  CAS  Google Scholar 

  • Rischitor PE, Konzack S, Fischer R (2004) The Kip3-like linesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryot Cell 3:632–645

    Article  PubMed  CAS  Google Scholar 

  • Rosenberger RF, Kessel M (1967) Synchronyofnuclear replication in individual hyphae of Aspergillus nidulans. J Bacteriol 94:1464–1469

    PubMed  CAS  Google Scholar 

  • Schier N, Fischer R (2002) The Aspergillus nidulans cyclin PclA accumulates in the nucleus and interacts with the central cell cycle regulator NimX(Cdc2). FEBS Lett 523:143–146

    Article  PubMed  CAS  Google Scholar 

  • Schier N, Liese R, Fischer R (2001) A Pcl-like cyclin of Aspergillus nidulans is transcriptionally activated by developmental regulators and is involved in sporulation. Mol Cell Biol 21:4075–4088

    Article  PubMed  CAS  Google Scholar 

  • Schoch CL, Aist JR, Yoder OC, Turgeon BG (2003) A complete inventory of fungal kinesins in representative filamentous ascomycetes. Fungal Genet Biol 39:1–15

    Article  PubMed  CAS  Google Scholar 

  • Seiler S, Plamann M, Schliwa M (1999) Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora. Curr Biol 12:779–785

    Article  Google Scholar 

  • Semighini CP, Fagundes MR, Ferreira JC, Pascon RC, Goldman MH, Goldman GH (2003) Different roles of the Mre11 complex in the DNA damage response in Aspergillus nidulans. Mol Microbiol 48:1693–1709

    Article  PubMed  CAS  Google Scholar 

  • Serna L, Stadler D (1978) Nuclear division cycle in germinating conidia of Neurospora. J Bacteriol 136:341–351

    PubMed  CAS  Google Scholar 

  • Seshan A, Amon A (2004) Linked for life: temporal and spatial coordination of late mitotic events. Curr Opin Cell Biol 16:41–48

    Article  PubMed  CAS  Google Scholar 

  • Sharpless KE, Harris SD (2002) Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 13:469–479

    Article  PubMed  CAS  Google Scholar 

  • Simanis V (2003) Events at the end of mitosis in the budding and fission yeasts. J Cell Sci 116:4263–4275

    Article  PubMed  CAS  Google Scholar 

  • Sluder G, Thompson EA, Rieder CL, Miller FJ (1995) Nuclear envelope breakdown is under nuclear not cytoplasmic control in sea urchin zygotes. J Cell Biol 129:1447–1458

    Article  PubMed  CAS  Google Scholar 

  • Stern B, Nurse P (1996) A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet 12:345–350

    Article  PubMed  CAS  Google Scholar 

  • Su S, Yanagida M (1997) Mitosis and cytokinesis in the fission yeast, Schizosaccharomyces pombe. In: Pringle JR, Broach JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces. Cell cycle and cell biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 765–825

    Google Scholar 

  • Thornton BR, Toczyski DP (2003) Securin and Bcyclin/CDK are the only essential targets of the APC. Nat Cell Biol 5:1090–1094

    Article  PubMed  CAS  Google Scholar 

  • Timberlake WE (1990) Molecular genetics of Aspergillus development. Annu Rev Genet 24:5–36

    Article  PubMed  CAS  Google Scholar 

  • Trinci APJ (1978) The duplication cycle and vegetative development in molds. In: Smith JE, Berry DR (eds) The Filamentous Fungi, vol 3. Developmental mycology. Arnold, London, pp 132–163

    Google Scholar 

  • Vardy L, Fujita A, Toda T (2002) The gamma-tubulin complex protein Apl4 provides a link between the metaphase checkpoint and cytokinesis in fission yeast. Genes Cells 7:365–373

    Article  PubMed  CAS  Google Scholar 

  • Westfall PJ, Momany M (2002) Aspergillus nidulans septin AspB plays pre-and postmitotic roles in septum, branch, and conidiophore development. Mol Biol Cell 13:110–118

    Article  PubMed  CAS  Google Scholar 

  • Wolkow TD, Harris, SD, Hamer JE (1996) Cytokinesis in Aspergillus nidulans is controlled by cell size, nuclear positioning and mitosis. J Cell Sci 109:2179–2188

    PubMed  CAS  Google Scholar 

  • Wu L, Osmani SA, Mirabito PM (1998) A role for NIMA in the nuclear localization of cyclin B in Aspergillus nidulans. J Cell Biol 141:1575–1587

    Article  PubMed  CAS  Google Scholar 

  • Xiang X, Fischer R (2004) Nuclear migration and positioning in filamentous fungi. Fungal Genet Biol 41:411–419

    Article  PubMed  CAS  Google Scholar 

  • Xiang X, Plamann M (2003) Cytoskeleton and motor proteins in filamentous fungi. Curr Opin Microbiol 6:628–633

    Article  PubMed  CAS  Google Scholar 

  • Ye XS, Xu G, Pu RT, Fincher RR, McGuire SL, Osmani AH, Osmani SA (1995) The NIMA protein kinase is hyperphosphorylated and activated downstream of p34cdc2/cyclin B: coordination of two mitosis promoting kinases. EMBO J 14:986–994

    PubMed  CAS  Google Scholar 

  • Ye XS, Fincher RR, Tang A, O’Donnell K, Osmani SA (1996) Two S-phase checkpoint systems, one involving the function of both BIME and Tyr15 phosphorylation of p34cdc2, inhibit NIMA and prevent premature mitosis. EMBO J 15:3599–3610

    PubMed  CAS  Google Scholar 

  • Ye XS, Fincher RR, Tang A, McNeal KK, Gygax SE, Wexler AN, Ryan KB, James SW, Osmani SA (1997a) Proteolysis and tyrosine phosphorylation of p34cdc2/cyclin B. The role of MCM2 and initiation of DNA replication to allow tyrosine phosphorylation of p34cdc2. J Biol Chem 272:33384–33393

    Article  PubMed  CAS  Google Scholar 

  • Ye XS, Fincher RR, Tang A, Osmani SA (1997b) The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans. EMBO J 16:182–192

    Article  PubMed  CAS  Google Scholar 

  • Ye XS, Fincher RR, Tang A, Osmani AH, Osmani SA (1998) Regulation of the anaphase-promoting complex/cyclosome by bimAAPC3 and proteolysis of NIMA. Mol Biol Cell 9:3019–3030

    PubMed  CAS  Google Scholar 

  • Ye XS, Lee SL, Wolkow TD, McGuire SL, Hamer JE, Wood GC, Osmani SA (1999) Interaction between developmental and cell cycle regulators is required for morphogenesis in Aspergillus. EMBO J 18:6994–7001

    Article  PubMed  CAS  Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harris, S.D. (2006). Mitosis in Filamentous Fungi. In: Kües, U., Fischer, R. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28135-5_3

Download citation

Publish with us

Policies and ethics