Skip to main content

Genetics and Molecular Biology of the Endosperm — A Tale of Two Model Systems

  • Chapter
Double Fertilization
  • 727 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalen RB (1995) The transcripts encoding two oleosin isoforms are both present in the aleurone and in the embryo of barley (Hordeum vulgare L.) seeds. Plant Mol Biol 28:583–588

    Article  PubMed  CAS  Google Scholar 

  • Adams S, Vinkenoog R, Spielman M, Dickinson HG, Scott RJ (2000) Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 127:2493–2502

    PubMed  CAS  Google Scholar 

  • Becraft PW (2001) Cell fate specification in the cereal endosperm. Semin Cell Dev Biol 12:387–394

    Article  PubMed  CAS  Google Scholar 

  • Becraft PW, Asuncion-Crabb Y (2000) Positional cues specify and maintain aleurone cell fate in maize endosperm development. Development 127:4039–4048

    PubMed  CAS  Google Scholar 

  • Becraft PW, Stinard PS, McCarty DR (1996) CRINKLY4: a TNFR-like receptor kinase involved in maize endosperm differentiation. Science 273:1406–1409

    PubMed  CAS  Google Scholar 

  • Becraft PW, Brown RC, Lemmon BE, Olsen O-A, Opsahl Ferstad HG (2001) Endosperm development. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwer, Dordrecht, pp 353–374

    Google Scholar 

  • Becraft PW, Li K, Dey N, Asuncion-Crabb Y (2002) The maize dek1 gene functions in embryonic pattern formation and cell fate specification. Development 129:5217–5225

    PubMed  CAS  Google Scholar 

  • Berger F (2003) Endosperm: the crossroad of seed development. Curr Opin Plant Biol 6:42–50

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA (1993) Dosage analysis of maize endosperm development. Annu Rev Genet 27:181–204

    Article  PubMed  CAS  Google Scholar 

  • Bonello J-F, Opsahl-Ferstad H-G, Perez P, Dumas C, Rogowsky PM (2000) Esr genes show different levels of expression in the same region of the maize endosperm. Gene 246:219–227

    Article  PubMed  CAS  Google Scholar 

  • Bonello J-F, Sevilla-Lecoq S, Berne A, Risueño M-C, Dumas C, Rogowsky PM (2002) Esr proteins are secreted by the cells of the embryo surrounding region. J Exp Bot 53:1559–1568

    Article  PubMed  CAS  Google Scholar 

  • Bosnes M, Harris E, Aigeltinger L, Olsen O-A (1987) Morphology and ultrastructure of 11 barley shrunken endosperm mutants. Theor Appl Genet 74:177–187

    Article  Google Scholar 

  • Bosnes M, Weideman F, Olsen O-A (1992) Endosperm differentiation in barley wild-type and sex mutants. Plant J 2:661–674

    Google Scholar 

  • Brink RA, Cooper DC (1947) The endosperm in seed development. Bot Rev 13:423–541

    Google Scholar 

  • Bushell C, Spielman M, Scott RJ (2003) The basis for natural and artificial postzygotic hybridization barriers in Arabidopsis species. Plant Cell 15:1430–1442

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri S, Messing J (1994) Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proc Natl Acad Sci USA 91:4867–4871

    PubMed  CAS  Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury AM, Koltunow A, Payne T, Luo M, Tucker MR, Dennis ER, Peacock WJ (2001) Control of early seed development. Annu Rev Cell Dev Biol 17:677–699

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42

    Article  PubMed  CAS  Google Scholar 

  • Collinge MA, Spillane C, Köhler C, Gheyselinck J, Grossniklaus U (2004) Genetic interaction of an origin recognition complex subunit of the polycomb group gene MEDEA during seed development. Plant Cell 16:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Costa LM, Gutièrrez-Marcos JF, Brutnell TP, Greenland AJ, Dickinson HG (2003) The globby1-1 (glo1-1) mutation disrupts nuclear and cell division in the developing maize seed causing alterations in endosperm cell fate and tissue differentiation. Development 130:5009–5017

    PubMed  CAS  Google Scholar 

  • Costa LM, Gutièrrez-Marcos JF, Dickinson HG (2004) More than a yolk: the short life and complex times of the plant endosperm. Trends Plant Sci 9:507–514

    Article  PubMed  CAS  Google Scholar 

  • Danilevskaya ON, Hermon P, Hantke S, Muszynski MG, Kollipara K, Ananiev EV (2003) Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell 15:425–438

    Article  PubMed  CAS  Google Scholar 

  • Dickinson H (2003) Plant cell cycle: cellularization of the endosperm needs spätzle. Curr Biol 13:R146–R148

    Article  PubMed  CAS  Google Scholar 

  • Doan DNP, Linnestad C, Olsen O-A (1996) Isolation of molecular markers from the barley endosperm coenocyte and the surrounding nucellus cell layers. Plant Mol Biol 31:877–886

    Article  PubMed  CAS  Google Scholar 

  • Felker FC, Peterson DM, Nelson OE (1985) Anatomy of immature grains of eight maternal effect shrunken endosperm barley mutants. Am J Bot 72:248–256

    Google Scholar 

  • Felker FC, Peterson DM, Nelson OE (1987) Early grain development of the seg2 maternal-effect shrunken-endosperm mutant of barley. Can J Bot 65:943–948

    Google Scholar 

  • Fu S, Meeley R, Scanlon MJ (2002) empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis. Plant Cell 14:3119–3132

    PubMed  CAS  Google Scholar 

  • Gao R, Dong S, Fan J, Hu C (1998) Relationship between development of endosperm transfer cells and grain mass in maize. Biol Plant 41:539–546

    Article  Google Scholar 

  • Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F (2003) Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol 131:661–1670

    Article  CAS  Google Scholar 

  • Gavazzi G, Dolfini S, Allegra D, Castiglioni P, Todesco G, Hoxha M (1996) Dap (Defective aleurone pigmentation) mutations affect maize aleurone development. Mol Gen Genet 256:223–230

    Google Scholar 

  • Gehring M, Choi Y, Fischer RL (2004) Imprinting and seed development. Plant Cell 16:S203–S213

    Article  PubMed  CAS  Google Scholar 

  • Gómez E, Royo J, Guo Y, Thompson R, Hueros G (2002) Establishment of central endosperm expression domains: identification and properties of a maize transfer-cell-specific transcription factor, ZmMRP-1. Plant Cell 14:599–610

    PubMed  Google Scholar 

  • Grimanelli D, Perotti E, Ramirez J, Leblanc O (2005) Timing of the maternal-to-zygotic transition during early seed development in maize. Plant Cell 17:1061–1072

    Article  PubMed  CAS  Google Scholar 

  • Grini PE, Jürgens G, Hülskamp M (2002) Embryo and endosperm development is disrupted in the female gametophytic capulet mutants of Arabidopsis. Genetics 162:1911–1925

    PubMed  CAS  Google Scholar 

  • Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450

    Article  PubMed  CAS  Google Scholar 

  • Guitton A-E, Page DR, Chambrier P, Lionnet C, Faure J-E, Grossniklaus U, Berger F (2004) Identification of new members of fertilization independent seed polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:2971-2981

    Google Scholar 

  • Guo M, Rupe MA, Danilevskaya ON, Yang X, Hu Z (2003) Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J 36:30–44

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Marcos JF, Costa LM, Biderre-Petit C, Khbaya B, O’sullivan DM, Wormald M, Perez P, Dickinson HG (2004) maternally expressed gene1 is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression. Plant Cell 16:1288–1301

    PubMed  Google Scholar 

  • Haig D, Westoby M (1989) Parent-specific gene expression and the triploid endosperm. Am Nat 134:147–155

    Article  Google Scholar 

  • Haig D, Westoby M (1991) Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos Trans R Soc London Ser B 333:1–13

    Google Scholar 

  • Hueros G, Varotto S, Salamini F, Thompson RD (1995) Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize. Plant Cell 7:747–757

    Article  PubMed  CAS  Google Scholar 

  • Hueros G, Gomez E, Cheikh N, Edwards J, Weldon M, Salamini F, Thompson RD (1999a) Identification of a promoter sequence from the BETL1 gene cluster able to confer transfer-cell-specific expression in transgenic maize. Plant Physiol 121:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Hueros G, Royo J, Maitz M, Salamini F, Thompson RD (1999b) Evidence for factors regulating transfer cell-specific expression in maize endosperm. Plant Mol Biol 41:403–414

    Article  PubMed  CAS  Google Scholar 

  • Kalla R, Shimamoto K, Potter R, Nielsen PS, Linnestad C, Olsen O-A (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J 6:849–860

    Article  PubMed  CAS  Google Scholar 

  • Kermicle JL (1970) Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66:69–85

    PubMed  Google Scholar 

  • Kermicle JL (1978) Imprinting of gene action in maize endosperm. In: Walden (ed) Maize breeding and genetics. Wiley, New York, pp 357–371

    Google Scholar 

  • Kessler S, Seiki S, Sinha N (2002) Xcl1 causes delayed oblique periclinal cell divisions in developing maize leaves, leading to cellular differentiation by lineage instead of position. Development 129:1859–1869

    PubMed  CAS  Google Scholar 

  • Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, Fischer RL (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945–1952

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada JJ, Goldberg RB, Fischer RL (1999) Cotntrol of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci USA 96:4186–4191

    Article  PubMed  CAS  Google Scholar 

  • Klemsdal SS, Hughes W, Lönneborg A, Aalen RB, Olsen O-A (1991) Primary structure of a novel barley gene differentially expressed in immature aleurone layers. Mol Gen Genet 228:9–16

    Article  PubMed  CAS  Google Scholar 

  • Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE polycomb group complex and required for seed development. EMBO J 22:4804–4814

    PubMed  Google Scholar 

  • Lauber MH, Waizenegger I, Steinmann, T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jilrgens G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139:1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Leah R, Skriver K, Knudsen S, Ruud-Hansen J, Raikhel NV, Mundy J (1994) Identification of an enhancer/silencer sequence directing the aleurone-specific expression of barley chitinase gene. Plant J 6:579–589

    Article  PubMed  CAS  Google Scholar 

  • Lid SE, Gruis D, Jung R, Lorentzen JA, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen O-A (2002) The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci USA 99:5460–5465

    Article  PubMed  CAS  Google Scholar 

  • Lid SE, Al RH, Krekling T, Meeley RB, Ranch J, Opsahl-Ferstad H-G, Olsen O-A (2004) The maize disorganized aleurone layer 1 and 2 (dil1, dil2) mutants lack control of the mitotic division plane in the aleurone layer of developing endosperm. Planta 218:370–378

    Article  PubMed  CAS  Google Scholar 

  • Lin B-Y (1982) Association of endosperm reduction with parental imprinting in maize. Genetics 100:475–486

    PubMed  Google Scholar 

  • Lin B-Y (1984) Ploidy barrier to endosperm development in maize. Genetics 107:103–115

    PubMed  Google Scholar 

  • Liu C, McElver JA, Tzafrir I, Joosen R, Wittich P, Patton D, van Lammeren AAM, Meinke D (2002) Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. Plant J 29:405–415

    Article  Google Scholar 

  • Liu C, Meinke DW (1998) The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during development. Plant J 16:12–31

    Article  Google Scholar 

  • Lund G, Ciceri P, Viotti A (1995a) Maternal-specific demethylation and expression of specific alleles of zein genes in the endosperm of Zea mays L. Plant J 8:571–581

    Article  PubMed  CAS  Google Scholar 

  • Lund G, Messing J, Viotti A (1995b) Endosperm-specific demethylation and activation of specific alleles of α-tubulin genes of Zea mays L. Mol Gen Genet 246:716–722

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:296–301

    PubMed  CAS  Google Scholar 

  • Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97:10637–10642

    PubMed  CAS  Google Scholar 

  • Magnard J-L, le Deunff E, Domenech J, Rogowsky PM, Testillano PS, Rougier M, Risueño MC, Vergne P, Dumas C (2000) Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize. Plant Mol Biol 44:559–574

    Article  PubMed  CAS  Google Scholar 

  • Magnard J-L, Lehouque G, Massonneau A, Frangne N, Heckel T, Gutierrez-Marcos JF, Perez P, Dumas C, Rogowsky PM (2003) ZmEBE genes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization. Plant Mol Biol 53:821–836

    Article  PubMed  CAS  Google Scholar 

  • Maitz M, Santandrea G, Zhang Z, Lal S, Hannah LC, Salamini F, Thompson RD (2000) rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J 23:29–42

    Article  PubMed  CAS  Google Scholar 

  • Mayer U, Herzog U, Berger F, Inzé D, Jürgens G (1999) Mutations in the PILZ group genes disrupt the microtubule cytoskeleton and uncouple progression from cell division in Arabidopsis embryo and endosperm. Eur J Cell Biol 78:100–108

    PubMed  CAS  Google Scholar 

  • McElver J, Patton D, Rumbaugh M, Liu C, Yang LJ, Meinke D (2000) The TITAN5 gene of Arabidopsis encodes a protein related to ADP ribosylation factor family of GTP binding proteins. Plant Cell 12:1379–1392

    Article  PubMed  CAS  Google Scholar 

  • Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99:6422–6427

    Article  PubMed  CAS  Google Scholar 

  • Neuffer MG, Sheridan WF (1980) Defective kernel mutants of maize. Genetic and lethality studies. Genetics 95:929–944

    PubMed  Google Scholar 

  • Ohad N, Margossian L, Hsu Y, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93:5319–5324.

    Article  PubMed  CAS  Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–415

    Article  PubMed  CAS  Google Scholar 

  • Olsen O-A (2004a) Dynamics of maize aleurone cell formation: the “surface” rule. Maydica 49:37–40

    Google Scholar 

  • Olsen O-A (2004b) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:S214–S227

    Article  PubMed  CAS  Google Scholar 

  • Olsen O-A, Lemmon B, Brown R (1998) A model for aleurone development. Trends Plant Sci 3:168–169

    Article  Google Scholar 

  • Olsen O-A, Linnestad C, Nichols SE (1999) Developmental biology of the cereal endosperm. Trends Plant Sci 4:253–257

    Article  PubMed  Google Scholar 

  • Opsahl-Ferstad H-G, le Deunff E, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J 12:235–246

    Article  PubMed  CAS  Google Scholar 

  • Scanlon MJ, Myers AM (1998) Phenotypic analysis and molecular cloning of discolored-1 (dsc1), a maize gene required for early kernel development. Plant Mol Biol 37:483–493

    Article  PubMed  CAS  Google Scholar 

  • Scanlon MJ, Stinard PS, James MG, Myers AM, Robertson DS (1994) Genetic analysis of 63 mutations affecting maize kernel development isolated from Mutator stocks. Genetics 136:281–294

    PubMed  CAS  Google Scholar 

  • Schel JHN, Kieft H, van Lammeren AAM (1984) Interaction between embryo and endosperm during early developmental stages of maize carypses (Zea mays). Can J Bot 62:2842–2853

    Article  Google Scholar 

  • Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–3341

    PubMed  CAS  Google Scholar 

  • Serna A, Maitz M, O’Connell T, Santandrea G, Thevissen K, Tienens K, Hueros G, Faleri C, Cai G, Lottspeich F, Thompson RD (2001) Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue. Plant J 25:687–698

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Li C, Min Z, Meeley RB, Tarczynski MC, Olsen O-A (2003). sal1 determines the number of aleurone cell layers in maize endosperm and encodes a class E vacuolar sorting protein. Proc Natl Acad Sci USA 100:6552–6557

    Article  PubMed  CAS  Google Scholar 

  • Smith LM, Handley J, Li Y, Martin H, Donovan L, Bowles DJ (1992) Temporal and spatial regulation of a novel gene in barley embryos. Plant Mol Biol 20:255–266

    Article  PubMed  CAS  Google Scholar 

  • Sørensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, Jürgens G, Somerville C, Lepiniec L, Berger F (2002) Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129:5567–5576

    PubMed  Google Scholar 

  • Springer PS, Holding DR, Groover A, Yordan C, Martienssen RA (2000) The essential Mcm7 protein PROLIFERA is localized to the nucleus of dividing cells during the G1 phase and is required maternally for early Arabidopsis development. Development 127:1815–1822

    PubMed  CAS  Google Scholar 

  • Stacy RAP, Nordeng TW, Culiáñez-Macià FA, Aalen RB (1999) The dormancy-related peroxiredoxin anti-oxidant, PER1, is localized to the nucleus of barley embryo and aleurone cells. Plant J 19:1–8

    Article  PubMed  CAS  Google Scholar 

  • Steinborn K, Maulbetsch C, Priester B, Trautmann S, Pacher T, Geiges B, Küttner F, Lepiniec L, Stierhof Y-D, Schwarz H, Jürgens G, Mayer U (2002) The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes Dev 16:959–971

    Article  PubMed  CAS  Google Scholar 

  • Taliercio EW, Kim J-Y, Mahe A, Shanker S, Choi J, Cheng W-H, Prioul J-L, Chourey PS (1999) Isolation, characterization and expression analyses of two cell wall invertase genes in maize. J Plant Physiol 155:197–204

    CAS  Google Scholar 

  • Thompson RD, Hueros G, Becker H-A, Maitz M (2001) Development and function of seed transfer cells. Plant Sci 160:775–783

    Article  PubMed  CAS  Google Scholar 

  • Tzafrir I, McElver JA, Liu C, Yang LJ, Wu JQ, Martinez A, Patton DA, Meinke DW (2002) Diversity of TITAN functions in Arabidpsis seed development. Plant Physiol 128:38–51

    Article  PubMed  CAS  Google Scholar 

  • Vielle-Calzada J-P, Thomas J, Spillane C, Coluccio A, Hoeppner MA, Grossniklaus U (1999) Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev 13:2971–2982

    Article  PubMed  CAS  Google Scholar 

  • Vinkenoog R, Scott RJ (2001) Autonomous endosperm development in flowering plants: how to overcome the imprinting problem? Sex Plant Reprod 14:189–194

    Article  Google Scholar 

  • Vinkenoog R, Spielman M, Adams S, Fischer RL, Dickinson HG, Scott RJ (2000) Hypomethylation promotes autonomous endosperm development and restores postfertilization lethality in fie mutants. Plant Cell 12:2271–2282

    Article  PubMed  CAS  Google Scholar 

  • von Wangenheim K-H, Peterson H-P (2004) Aberrant endosperm development in interploidy crosses reveals a timer of differentiation. Dev Biol 270:277–289

    Google Scholar 

  • Wang HL, Offler CE, Patrick JW (1994) Nucellar projection transfer cells in the developing wheat grain. Protoplasma 182:39–52

    Article  Google Scholar 

  • Wisniewski J-P, Rogowsky PM (2004) Vacuolar H+-translocating inorganic pyrophosphatase (Vpp1) marks partial aleurone cell fate in cereal endosperm development. Plant Mol Biol 56:325–337

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Gehring M, Choi Y, Margossian L, Pu H, Harada JJ, Goldberg RB, Pennell RI, Fischer RL (2003) Imprinting of the MEA polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev Cell 5:891–901

    Article  PubMed  CAS  Google Scholar 

  • Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, Choi Y, Katz A, Nakashima K, Harada JJ, Goldberg RB, Fischer RL, Ohad N (2000) Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12:2367–2381

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Genetics and Molecular Biology of the Endosperm — A Tale of Two Model Systems. In: Double Fertilization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27792-7_8

Download citation

Publish with us

Policies and ethics