Skip to main content

Establishment of the Embryo Body Plan — A Reassessment of Cell Lineage and Cell Fate

  • Chapter
  • 741 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessa L, Kropf DL (1999) F-Actin marks the rhizoid pole in living Pelvetia compressa zygotes. Development 126:201–209

    PubMed  CAS  Google Scholar 

  • Arekal GD, Ramaswamy SN (1973) Embryology of Burmannia pusilla (Wall. ex Miers) THW. and its taxonomic status. Beitr Biol Pflanz 49:35–45

    Google Scholar 

  • Ashley T (1972) Zygote shrinkage and subsequent development in some Hibiscus hybrids. Planta 08:303–317

    Google Scholar 

  • Bright SWJ, Wood EA, Miflin BJ (1978) The effect of aspartate-derived amino acids (lysine, threonine, methionine) on the growth of excided embryos of wheat and barley. Planta 39:113–117

    Google Scholar 

  • Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971

    PubMed  CAS  Google Scholar 

  • Campenot MK, Zhang G, Cutler AJ, Cass DD (1992) Zea mays embryo sacs in culture. I. Plant regeneration from 1 day after pollination embryos. Am J Bot 79:1368–1373

    Google Scholar 

  • Carniel K (1967) Über die Embryobildung in der Gattung Paeonia. Oesterr Bot Z 14:4–19

    Google Scholar 

  • Cass D, Karas I (1974) Ultrastructural organization of the egg of Plumbago zeylanica. Protoplasma 81:49–62

    Article  PubMed  CAS  Google Scholar 

  • Cave MS, Arnott HJ, Cook SA (1961) Embryogeny in the California peonies with reference to their taxonomic position. Am J Bot 48:397–404

    Google Scholar 

  • Chamberlin MA, Horner HT, Palmer RG (1993) Nutrition of the ovule, embryo sac, and young embryo in soybean: an anatomical and autoradiographic study. Can J Bot 71:1153–1168

    Google Scholar 

  • Chen J-G, Ullah H, Young JC, Sussman MR, Jones AM (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15:902–911

    Google Scholar 

  • Christensen SK, Dagenais N, Chory J, Weigel D (2000) Regulation of auxin response by the protein kinase PINOID. Cell 00:469–478

    CAS  Google Scholar 

  • Clark JK (1996) Maize embryogenesis mutants. In: Wang TL, Cuming A (eds) Embryogenesis. The generation of a plant. Bios, Oxford, pp 89–112

    Google Scholar 

  • Cocucci A, Jensen WA (1969) Orchid embryology: megagametophyte of Epidendrum scutella following fertilization. Am J Bot 56:629–640

    Google Scholar 

  • Comeau A, Nadeau P, Plourde A, Simard R, Maës O, Kelly S, Harper L, Lettre J, Landry B, St-Pierre C-A (1992) Media for the in ovulo culture of proembryos of wheat and wheat-derived interspecific hybrids or haploids. Plant Sci 81:117–125

    Article  CAS  Google Scholar 

  • Corellou F, Potin P, Brownless C, Kloareg B, Bouget F-Y (2000) Inhibition of the establishment of zygotic polarity by protein tyrosine kinase inhibitors leads to an alteration of embryo pattern in Fucus. Dev Biol 219:165–182

    Article  PubMed  CAS  Google Scholar 

  • Corsi G (1972) The suspensor of Eruca sativa Miller (Cruciferae) during embryogenesis in vitro. G Bot Ital 106:41–54

    Google Scholar 

  • Crété P (1963) Embryo. In: Maheshwari P (ed) Recent advances in the embryology of angiosperms. International Society of Plant Morphologists, Delhi, India, pp 171–220

    Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84

    PubMed  CAS  Google Scholar 

  • Dornelas MC, Wittich P, von Recklinghausen I, van Lammeren A, Kreis M (1999) Characterization of three novel members of the Arabidopsis SHAGGY-related protein kinase (ASK) multigene family. Plant Mol Biol 39:137–147

    Article  PubMed  CAS  Google Scholar 

  • Dunn SM, Drews GN, Fischer R L, Harada JJ, Goldberg RB, Koltunow AM (1997) fist: an Arabidopsis mutant with altered cell division planes and radial pattern disruption during embryogenesis. Sex Plant Reprod 10:358–367

    Article  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  PubMed  CAS  Google Scholar 

  • Elster R, Bommert P, Sheridan WF, Werr W (2000) Analysis of four embryo-specific mutants in Zea mays reveals that incomplete radial organization of the proembryo interferes with subsequent development. Dev Genes Evol 210:300–310

    Article  PubMed  CAS  Google Scholar 

  • Faure J-D, Vittorioso P, Santoni V, Fraisier V, Prinsen E, Barlier I, van Onckelen H, Caboche M, Bellini C (1998) The PASTICCINO genes of Arabidopsis thaliana are involved in the control of cell division and differentiation. Development 125:909–918

    PubMed  CAS  Google Scholar 

  • Fischer C, Neuhaus G (1995) In vitro development of globular zygotic wheat embryos. Plant Cell Rep 15:186–191

    CAS  Google Scholar 

  • Fischer C, Neuhaus G (1996) Influence of auxin on the establishment of bilateral symmetry in monocots. Plant J 9:659–669

    Article  CAS  Google Scholar 

  • Fischer C, Speth V, Fleig-Eberenz S, Neuhaus G (1997) Induction of zygotic polyembryos in wheat: influence of auxin polar transport. Plant Cell 9:1767–1780

    PubMed  CAS  Google Scholar 

  • Fischer-Iglesias, C, Sundberg B, Neuhaus G, Jones AM (2001) Auxin distribution and transport during embryonic pattern formation in wheat. Plant J 26:115–129

    Article  PubMed  CAS  Google Scholar 

  • Fisher RH, Barton MK, Cohen JD, Cooke TJ (1996) Hormonal studies of fass, an Arabidopsis mutant that is altered in organ elongation. Plant Physiol 110:1109–1121

    PubMed  CAS  Google Scholar 

  • Folsom MW, Peterson CM (1984) Ultrastructural aspects of the mature embryo sac of soybean, Glycine max (L.) Merr. Bot Gaz 145:1–10

    Article  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PBF, Ljung K, Sandberg G, Hooykaas PJJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865

    Article  PubMed  CAS  Google Scholar 

  • Fry SC, Wangermann E (1976) Polar transport of auxin through embryos. New Phytol 77:313–317

    CAS  Google Scholar 

  • Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M (2004) PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131:5021–5030

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  PubMed  CAS  Google Scholar 

  • Gillmor CS, Poindexter P, Lorieau J, Palcic MM, Somerville C (2002) α-Glucosidase is required for cellulose biosynthesis and morphogenesis in Arabidopsis. J Cell Biol 156:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Giuliani C, Consonni G, Gavazzi G, Colombo M, Dolfini S (2002) Programmed cell death during embryogenesis in maize. Ann Bot 90:287–292

    Article  PubMed  Google Scholar 

  • Green CE, Donovan CM (1980) Effect of aspartate-derived amino acids and aminoethyl-cysteine on growth of excised mature embryos of maize. Crop Sci 20:358–362

    CAS  Google Scholar 

  • Hable WE, Kropf DL (1998) Roles of secretion and the cytoskeleton in cell adhesion and polarity establishment in Pelvetia compressa zygotes. Dev Biol 198:45–56

    PubMed  CAS  Google Scholar 

  • Hable WE, Miller NR, Kropf DL (2003) Polarity establishment requires dynamic actin in fucoid zygotes. Protoplasma 221:193–204

    PubMed  CAS  Google Scholar 

  • Hadfi K, Speth V, Neuhaus G (1998) Auxin-induced developmental patterns in Brassica juncea embryos. Development 125:879–887

    PubMed  CAS  Google Scholar 

  • Haecker A, GroßHardt R, Geiges B, Sarkar A, Breuninger H, Hermann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    Article  PubMed  CAS  Google Scholar 

  • Hamann T, Benkova E, Bãurle I, Kientz M, Jürgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615

    Article  PubMed  CAS  Google Scholar 

  • Han Y-Z, Huang B-Q, Zee S-Y, Yuan M (2000) Symplastic communication between the central cell and the egg apparatus cells in the embryo sac of Torenia fournieri Lind. before and during fertilization. Planta 211:158–162

    Article  PubMed  CAS  Google Scholar 

  • Hanstein J (1870) Die Entwicklung des Keimes der Monokotylen und Dikotylen. Botanische Abhandlungen aus dem Gebiet der Morphologie und Physiologie, I. Marcus, Bonn

    Google Scholar 

  • Hardham AR (1976) Structural aspects of the pathways of nutrient flow to the developing embryo and cotyledons of Pisum sativum L. Aust J Bot 24:711–721

    Article  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Harris GP (1956) Amino acids as sources of nitrogen for the growth of isolated oat embryos. New Phytol 55:53–268

    Google Scholar 

  • Hemerly AS, Ferreira PCG, van Montagu M, Engler G, Inzé D (2000) Cell division events are essential for embryo patterning and morphogenesis: studies on dominant-negative cdc2aAt mutants of Arabidopsis. Plant J 23:123–130

    Article  PubMed  CAS  Google Scholar 

  • Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roué C (1994) Regeneration of fertile barley plants from mechanically isolated protoplasts of the fertilized egg. Plant Cell 6:531–543

    Article  PubMed  CAS  Google Scholar 

  • Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roué C (1995) Regeneration of the barley zygote in ovule culture. Sex Plant Reprod 8:49–59

    Article  Google Scholar 

  • Hoshino Y, Scholten S, von Wiegen P, Lörz H, Kranz E (2004) Fertilization-induced changes in the microtubular architecture of the maize egg cell and zygote — an immunocytochemical approach adapted to single cells. Sex Plant Reprod 17:89–95

    Article  CAS  Google Scholar 

  • Hu S, Zhu C, Zee SY (1983) Transfer cells in suspensor and endosperm during early embryogeny of Vigna sinensis. Acta Bot Sin 25:1–7

    Google Scholar 

  • Ingram GC, Magnard J-L, Vergne P, Dumas C, Rogowsky PM (1999) ZmOCL1, an HDGL2 family homeobox gene, is expressed in the outer cell layer throughout maize development. Plant Mol Biol 40:343–354

    Article  PubMed  CAS  Google Scholar 

  • Ingram GC, Boisnard-Lorig C, Dumas C, Rogowsky PM (2000) Expression patterns of genes encoding HD-ZipIV homeo domain proteins define specific domains in maize embryos and meristems. Plant J 22:401–414

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Sentoku N, Nishimura A, Hong S-K, Sato Y, Matsuoka M (2002) Position dependent expression of GL2-type homeobox gene, Roc1: significance for protoderm differentiation and radial pattern formation in early rice embryogenesis. Plant J 29:497–507

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LF (1968) Localization in the developing Fucus egg and the general role of localizing currents. Adv Morphog 7:295–328

    PubMed  CAS  Google Scholar 

  • Jensen WA (1963) Cell development during plant embryogenesis. In: Meristems and differentiation. Brookhaven Symp Biol 16:179–202

    Google Scholar 

  • Jensen WA (1965) The ultrastructure and composition of the egg and central cell of cotton. Am J Bot 52:781–797

    Google Scholar 

  • Jensen WA (1968) Cotton embryogenesis: the zygote. Planta 79:346–366

    Article  Google Scholar 

  • Johansen DA (1950) Plant embryology. Embryogeny of the spermatophyta. Chronica Botanica, Waltham, MA

    Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms, vol 1 and 2. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jürgens G (2001) Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 20:3609–3616

    PubMed  Google Scholar 

  • Jürgens G, Mayer U (1994) Arabidopsis. In: Bard J (ed) Embryos. Color atlas of development. Wolfe, London, pp 7–21

    Google Scholar 

  • Kaplan DR, Cooke TJ (1997) Fundamental concepts in the embryogenesis of dicotyledons: a morphological interpretation of embryo mutants. Plant Cell 9:1903–1919

    Article  PubMed  CAS  Google Scholar 

  • Kapoor M (1959) Influence of growth substances on the ovules of Zephyranthes. Phytomorphology 9:313–315

    Google Scholar 

  • Kim I, Hempel FD, Sha K, Pfluger J, Zambryski PC (2002) Identification of a developmental transition in plasmodesmatal function during embryogenesis in Arabidopsis thaliana. Development 129:1261–1272

    PubMed  CAS  Google Scholar 

  • Kim I, Cho E, Crawford K, Hempel FD, Zambryski PC (2005) Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc Natl Acad Sci USA 102:2227–2131

    PubMed  CAS  Google Scholar 

  • Klinge B, Werr W (1995) Transcription of the Zea mays homeobox (ZmHox) genes is activated early in embryogenesis and restricted to meristems of the maize plant. Dev Genet 16:349–357

    Article  CAS  Google Scholar 

  • Kost B, Potrykus I, Neuhaus G (1992) Regeneration of fertile plants from excised immature zygotic embryos of Arabidopsis thaliana. Plant Cell Rep 12:50–54

    Google Scholar 

  • Kropf DL (1992) Establishment and expression of cellular polarity in fucoid zygotes. Microbiol Rev 56:316–339

    PubMed  CAS  Google Scholar 

  • Kropf DL, Berge SK, Quatrano RS (1989) Actin localization during Fucus embryogenesis. Plant Cell 1:191–200

    Article  PubMed  CAS  Google Scholar 

  • Kropf DL, Bisgrove SR, Hable WE (1999) Establishing a growth axis in fucoid algae. Trends Plant Sci 4:490–494

    Article  PubMed  Google Scholar 

  • Kumlehn J, Lörz H, Kranz E (1998) Differentiation of isolated wheat zygotes into embryos and normal plants. Planta 205:327–333

    Article  CAS  Google Scholar 

  • Kuroiwa H, Nishimura Y, Higashiyama T, Kuroiwa T (2002) Pelargonium embryogenesis: cytological investigations of organelles in early embryogenesis from the egg to the two-celled embryo. Sex Plant Reprod 15:1–12

    Google Scholar 

  • Lagriffol J, Monnier M (1985) Effects of endosperm and placenta on development of Capsella embryos in ovules cultivated in vitro. J Plant Physiol 118:127–137

    Google Scholar 

  • Leduc N, Matthys-Rochon E, Dumas C (1995) Deleterious effect of minimal enzymatic treatments on the development of isolated maize embryo sacs in culture. Sex Plant Reprod 8:313–317

    Article  Google Scholar 

  • Leduc N, Matthys-Rochon E, Rougier M, Mogensen L, Holm P, Magnard J-L, Dumas C (1996) Isolated maize zygotes mimic in vivo embryonic development and express microinjected genes when cultured in vitro. Dev Biol 177:190–203

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Xu Z, Chua N-H (1993a) Proembryo culture: in vitro development of early globular-stage zygotic embryos from Brassica juncea. Plant J 3:291–300

    Google Scholar 

  • Liu C, Xu Z, Chua N-H (1993b) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Barton MK (1998) The development of apical embryonic pattern in Arabidopsis. Development 125:3027–3035

    PubMed  CAS  Google Scholar 

  • Lu P, Porat R, Nadeau JA, O’Neill SD (1996) Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell 8:2155–2168

    PubMed  CAS  Google Scholar 

  • Maheshwari N (1958) In vitro culture of excised ovules of Papaver somniferum. Science 127:342

    PubMed  Google Scholar 

  • Maheshwari N, Lal M (1961) In vitro culture of excised ovules of Papaver somniferum L. Phytomorphology 11:307–314

    CAS  Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Mansfield SG, Briarty LG (1991) Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can J Bot 69:461–476

    Google Scholar 

  • Mansfield SG, Briarty LG (1992) Cotyledon cell development in Arabidopsis thaliana during reserve deposition. Can J Bot 70:151–164

    Google Scholar 

  • Mansfield SG, Briarty LG, Erni S (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can J Bot 69:447–460

    Google Scholar 

  • Matsubara S (1964) Effect of nitrogen compounds on the growth of isolated young embryos of Datura. Bot Mag Tokyo 77:253–259

    CAS  Google Scholar 

  • Matthiessen Å (1962) A contribution to the embryogeny of Paeonia. Acta Hortic Berg 20:57–61

    Google Scholar 

  • Matthys-Rochon E, Piola F, le Deunff E, Mól R, Dumas C (1998) In vitro development of maize immature embryos: a tool for embryogenesis analysis. J Exp Bot 49:839–845

    Article  CAS  Google Scholar 

  • Mayer U, Jürgens G (1998) Pattern formation in plant embryogenesis: a reassessment. Semin Cell Dev Biol 9:187–193

    Article  PubMed  CAS  Google Scholar 

  • Mayer U, Torres Ruiz RA, Berleth TE, Miséra S, Jürgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353:402–407

    Article  Google Scholar 

  • Meinke DW (1992) A homeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258:1647–1650

    PubMed  Google Scholar 

  • Miflin BJ (1969) The inhibitory effects of various amino acids on the growth of barley seedlings. J Exp Bot 20:810–819

    CAS  Google Scholar 

  • Mogensen HL (1972) Fine structure and composition of the egg apparatus before and after fertilization in Quercus gambelii: the functional ovule. Am J Bot 59: 931–941

    Google Scholar 

  • Mogensen HL, Suthar HK (1979) Ultrastructure of the egg apparatus of Nicotiana tabacum (Solanaceae) before and after fertilization. Bot Gaz 140:168–179

    Article  Google Scholar 

  • Mól R, Matthys-Rochon E, Dumas C (1993) In-vitro culture of fertilized embryo sacs of maize: zygotes and two-celled proembryos can develop into plants. Planta 189:213–217

    Google Scholar 

  • Mól R, Matthys-Rochon E, Dumas C (1995) Embryogenesis and plant regeneration from maize zygotes by in vitro culture of fertilized embryo sacs. Plant Cell Rep 14:743–747

    Google Scholar 

  • Mól R, Idzikowska K, Dumas C, Matthys-Rochon E (2000) Late steps of egg cell differentiation are accelerated by pollination in Zea mays L. Planta 210:749–757

    PubMed  Google Scholar 

  • Monnier M (1976) Culture in vitro de l’embryon immature de Capsella bursa-pastoris Moench. Rev Cytol Biol Vég 39:1–120

    CAS  Google Scholar 

  • Moscov IV (1964) On the development of the embryo in several species of Paeonia. Bot Zhu 49:887–894

    Google Scholar 

  • Mu X, Wang F (1985) The early development of embryo and endosperm of Paeonia lactiflora. Acta Bot Sin 27:7–12

    Google Scholar 

  • Murgai P (1959) The development of the embryo in Paeonia. — A reinvestigation. Phytomorphology 9:275–277

    Google Scholar 

  • Nagl W (1990) Translocation of putrescine in the ovule, suspensor and embryo of Phaseolus coccineus. J Plant Physiol 136:587–591

    CAS  Google Scholar 

  • Natesh S, Rao MA (1984) The embryo. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 377–443

    Google Scholar 

  • Nawaschin S (1898) Resultate einer Revision der Befruchtungsvorgãnge bei Lilium martagon und Fritillaria tenella. Bull Acad Imp Sci St-Pétersbourg Ser 5, 9:377–382

    Google Scholar 

  • Norstog K (1972) Factors relating to precocious germination in cultured barley embryos. Phytomorphology 22:134–139

    Google Scholar 

  • Norstog K, Klein RM (1972) Development of cultured barley embryos. II. Precocious germination and dormancy. Can J Bot 50:1887–1894

    Google Scholar 

  • Norstog K, Smith JE (1963) Culture of small barley embryos on defined media. Science 142:1655–1656

    PubMed  Google Scholar 

  • Nuccitelli R (1978) Oöplasmic segregation and secretion in the Pelvetia egg is accompanied by a membrane-generated electrical current. Dev Biol 62:13–33

    Article  PubMed  CAS  Google Scholar 

  • Nyman LP, Webb EL, Gu Z, Arditti J (1986) Structure and in vitro growth of zygotic embryos of taro (Colocasia esculenta var. antiquorum). Ann Bot 57:623–630

    Google Scholar 

  • Nyman LP, Webb EL, Gu Z, Arditti J (1987) Effects of growth regulators and glutamine on in vitro development of zygotic embryos of taro (Colocasia esculenta var. antiquorum). Ann Bot 59:517–523

    CAS  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    Article  PubMed  CAS  Google Scholar 

  • Okonkwo SNC, Raghavan V (1982) Studies on the germination of seeds of the root parasites, Alectra vogelii and Striga gesnerioides. I. Anatomical changes in the embryos. Am J Bot 69:1636–1645

    Google Scholar 

  • Olson AR (1980) Seed morphology of Monotropa uniflora L. (Ericaceae). Am J Bot 67:968–974

    Google Scholar 

  • Olson AR, Cass DD (1981) Changes in megagametophyte structure in Papaver nudicaule L. (Papaveraceae) following in vitro placental pollination. Am J Bot 68:1333–1341

    Google Scholar 

  • Pang PP, Pruitt RE, Meyerowitz EM (1988) Molecular cloning, genomic organization, expression and evolution of 12S seed storage protein genes of Arabidopsis thaliana. Plant Mol Biol 11:805–820

    Article  CAS  Google Scholar 

  • Paris D, Rietsema J, Satina S, Blakeslee AF (1953) Effect of amino acids, especially aspartic and glutamic acid and their amides, on the growth of Datura stramonium embryos in vitro. Proc Natl Acad Sci USA 39:1205–1212

    CAS  PubMed  Google Scholar 

  • Perez-Grau L (2002) Plant embryogenesis — the cellular design of a plant. In: O’Neill SD, Roberts JA (eds) Plant reproduction, Annual Plant Reviews vol 6. Sheffield Academic Press, Sheffield, pp 154–192

    Google Scholar 

  • Perez-Grau L, Goldberg RB (1989) Soybean seed protein genes are regulated spatially during embryogenesis. Plant Cell 1:1095–1109

    Article  PubMed  CAS  Google Scholar 

  • Poethig RS, Coe EH Jr, Johri MM (1986) Cell lineage patterns in maize embryogenesis: a clonal analysis. Dev Biol 117:392–404

    Article  Google Scholar 

  • Prakash N (1987) Embryology of the Leguminosae. In: Stirton CH (ed) Advances in legume systematics, part 3. Royal Botanic Gardens, Kew, pp 241–278

    Google Scholar 

  • Pret’ová A (1974) The influence of the osmotic potential of the cultivation medium on the development of excised flax embryos. Biol Plant 16:14–20

    Google Scholar 

  • Pret’ová A (1986) Growth of zygotic flax embryos in vitro and influence of kinetin. Plant Cell Rep 3:210–211

    Google Scholar 

  • Quatrano RS, Shaw SL (1997) Role of the cell wall in the determination of cell polarity and the plane of cell division in Fucus embryos. Trends Plant Sci 2:15–21

    Article  Google Scholar 

  • Raghavan V (1976) Experimental embryogenesis in vascular plants. Academic Press, London

    Google Scholar 

  • Raghavan V (1980) Embryo culture. Int Rev Cytol Suppl 11B:209–240

    CAS  Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, New York

    Google Scholar 

  • Raghavan V, Goh CJ (1994) DNA synthesis and mRNA accumulation during germination of embryos of the orchid Spathoglottis plicata. Protoplasma 183:137–147

    Article  CAS  Google Scholar 

  • Raghavan V, Sharma K (1995) Zygotic embryogenesis in gymnosperms and angiosperms. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 73–115

    Google Scholar 

  • Raghavan V, Srivastava PS (1982) Embryo culture. In: Johri BM (ed) Experimental embryology of vascular plants. Springer Heidelberg New York, Berlin, pp 195–230

    Google Scholar 

  • Raghavan V, Torrey JG (1963) Growth and morphogenesis of globular and older embryos of Capsella in culture. Am J Bot 50:540–551

    Google Scholar 

  • Raghavan V, Torrey JG (1964) Effects of certain growth substances on the growth and morphogenesis of immature embryos of Capsella in culture. Plant Physiol 39:691–699

    CAS  PubMed  Google Scholar 

  • Ramaswamy SN, Arekal GD (1982) Embryology of Eriocaulon xeranthemum Mart. (Eriocaulaceae). Acta Bot Neerl 31:41–54

    Google Scholar 

  • Ramaswamy SN, Swamy BGL, Govindappa DA (1981) From zygote to seedling in Eriocaulon robusto-brownianum Ruhl. (Eriocaulaceae). Beitr Biol Pflanz 55:179–188

    Google Scholar 

  • Randolph LF (1936) Developmental morphology of the caryopsis in maize. J Agric Res 53:881–916

    Google Scholar 

  • Rangaswamy NS (1967) Morphogenesis of seed germination in angiosperms. Phytomorphology 17:477–487

    Google Scholar 

  • Ribnicky DM, Cohen JD, Hu W-S, Cooke TJ (2002) An auxin surge following fertilization in carrots: a mechanism for regulating plant totipotency. Planta 214:505–509

    PubMed  CAS  Google Scholar 

  • Rietsema J, Satina S, Blakeslee AF (1953) The effect of sucrose on the growth of Datura stramonium embryos in vitro. Am J Bot 40:538–545

    CAS  Google Scholar 

  • Rijven AHGC (1952) In vitro studies on the embryos of Capsella bursa-pastoris. Acta Bot Neerl 1:157–200

    Google Scholar 

  • Rijven AHGC (1956) Glutamine and asparagines as nitrogen sources for the growth of plant embryos in vitro: a comparative study of 12 species Aust J Biol Sci 9:511–527

    CAS  Google Scholar 

  • Robinson KR, Jaffe LF (1975) Polarizing Fucoid eggs drive a calcium current through themselves. Science 187:70–72

    PubMed  CAS  Google Scholar 

  • Ryczkowski M (1960) Changes of the osmotic value during the development of the ovule. Planta 55:343–356

    Google Scholar 

  • Sanders ME, Burkholder PR (1948) Influence of amino acids on growth of Datura embryos in culture. Proc Natl Acad Sci USA 34:516–526

    CAS  Google Scholar 

  • Sauer M, Friml J (2004) In vitro culture of Arabidopsis embryos within their ovules. Plant J 40:835–843

    PubMed  Google Scholar 

  • Saulsberry A, Martin PR, O’Brien T, Sieburth LE, Pickett FB (2002) The induced sector Arabidopsis apical embryonic fate map. Development 129:3403–3410

    PubMed  CAS  Google Scholar 

  • Schel JHN, Kieft H (1986) An ultrastructural study of embryo and endosperm development during in vitro culture of maize ovaries (Zea mays). Can J Bot 64:2227–2238

    Article  Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristems. Development 120:2475–2487

    CAS  Google Scholar 

  • Schulz P, Jensen WA (1969) Capsella embryogenesis: the suspensor and the basal cell. Protoplasma 67:139–163

    Article  Google Scholar 

  • Schulz P, Jensen WA (1974) Capsella embryogenesis: the development of the free nuclear endosperm. Protoplasma 80:183–205

    Article  Google Scholar 

  • Schulz P, Jensen WA (1977) Cotton embryogenesis: the early development of the free nuclear endosperm. Am J Bot 64:384–394

    Google Scholar 

  • Schulz R, Jensen WA (1968) Capsella embryogenesis: the egg, zygote, and young embryo. Am J Bot 55:807–819

    Google Scholar 

  • Sessions A, Weigel D, Yanofsky MF (1999) The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J 20:259–263

    Article  PubMed  CAS  Google Scholar 

  • Shaw SL, Quatrano RS (1996) Polar localization of a dihydropyridine receptor on living Fucus zygotes. J Cell Sci 109:335–342

    PubMed  CAS  Google Scholar 

  • Sheridan WF, Clark JK (1994) Fertilization and embryogeny in maize. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York Berlin Heidelberg, pp 3–10

    Google Scholar 

  • Smith JG (1973) Embryo development in Phaseolus vulgaris II. Analysis of selected inorganic ions, ammonia, organic acids, amino acids, and sugars in the endosperm liquid. Plant Physiol 51:454–458

    Article  CAS  PubMed  Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    Article  PubMed  CAS  Google Scholar 

  • Stewart JM, Hsu CL (1977) In-ovulo embryo culture and seedling development of cotton (Gossypium hirsutum L.). Planta 137:113–117

    Article  CAS  Google Scholar 

  • Strasburger E (1884) Neue Untersuchungen über den Befruchtungsvorgang bei den Phanerogamen als Grundlage für eine Theorie der Zeugung. Fischer-verlag, Jena

    Google Scholar 

  • Sumner MJ (1992) Embryology of Brassica campestris: the entrance and discharge of the pollen tube in the synergid and the formation of the zygote. Can J Bot 70:1577–1590

    Google Scholar 

  • Sumner MJ, van Caeseele L (1989) The ultrastructure and cytochemistry of the egg apparatus of Brassica campestris. Can J Bot 67:177–190

    Article  Google Scholar 

  • Sun H, Basu S, Brady SR, Luciano RL, Muday GK (2004) Interactions between auxin transport and the actin cytoskeleton in developmental polarity of Fucus distichus embryos in response to light and gravity. Plant Physiol 135:266–278

    PubMed  CAS  Google Scholar 

  • Tanaka H, Onouchi H, Kondo M, Hara-Nishimura I, Nishimura M, Machida C, Machida Y (2001) A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128:4681–4689

    PubMed  CAS  Google Scholar 

  • Tilton VR, Wilcox LW, Palmer RG (1984) Postfertilization wandlabrinthe formation and function in the central cell of soybean, Glycine max (L.) Merr. (Leguminosae). Bot Gaz 145:334–339

    Article  Google Scholar 

  • Töpfer R, Steinbiss H-H (1985) Plant regeneration from cultured fertilized barley ovules. Plant Sci 41:49–54

    Google Scholar 

  • Topping J, Lindsey K (1997) Promoter trap markers differentiate structural and positional components of polar development in Arabdiopsis. Plant Cell 9:1713–1725

    Article  PubMed  CAS  Google Scholar 

  • Topping JF, May VJ, Muskett PR, Lindsey K (1997) Mutations in the HYDRA1 gene of Arabidopsis perturb cell shape and sirupt embryonic and seedling morphogenesis. Development 124:4415–4424

    PubMed  CAS  Google Scholar 

  • Torres-Ruiz RA, Jürgens G (1994) Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120:2967–2978

    PubMed  CAS  Google Scholar 

  • Traas J, Bellini C, Nacry P, Kronenberger J, Bouchez D, Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375:676–677

    Article  CAS  Google Scholar 

  • van der Klei H, van Damme J, Casteels P, Krebbers E (1993) A fifth 2S albumin isoform is present in Arabidopsis thaliana. Plant Physiol 101:1415–1416

    PubMed  Google Scholar 

  • van Lammeren AAM (1986) A comparative ultrastructural study of the megagametophytes in two strains of Zea mays L. before and after fertilization. Agric Univ Wageningen Papers 86(1):1–37

    Google Scholar 

  • van Lammeren AAM (1988) Observations on the structural development of immature maize embryos (Zea mays L.) during in vitro culture in the presence or absence of 2,4-D. Acta Bot Neerl 37:49–61

    Google Scholar 

  • van Overbeek J, Conklin ME, Blakeslee AF (1942) Cultivation in vitro of small Datura embryos. Am J Bot 29:472–477

    Google Scholar 

  • van Overbeek J, Siu R, Haagen-Smit AJ (1944) Factors affecting the growth of Datura embryos in vitro. Am J Bot 31:219–224

    Google Scholar 

  • Vroemen CW, Langeveld S, Mayer U, Ripper G, Jürgens G, van Kammen A, de Vries SC (1996) Pattern formation in the Arabidopsis embryo revealed by position-specific lipid transfer protein gene expression. Plant Cell 8:783–791

    Article  PubMed  CAS  Google Scholar 

  • Webb MC, Gunning BES (1991) The microtubular cytoskeleton during development of the zygote, proembryo and free-nuclear endosperm in Arabidopsis thaliana (L.) Heynh. Planta 184:187–195

    Google Scholar 

  • Weterings K, Apuya NR, Bi Y, Fischer RL, Harada JJ, Goldberg RB (2001). Regional localization of suspensor mRNAs during early embryo development. Plant Cell 13:2409–2425

    Article  PubMed  CAS  Google Scholar 

  • Woodrick R, Martin PR, Birman I, Pickett FB (2000) The Arabidopsis embryonic shoot fate map. Development 127:813–820

    PubMed  CAS  Google Scholar 

  • Yadegari R, Goldberg RB (1997) Embryogenesis in dicotyledonous plants. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer, Dordrecht, pp 3–52

    Google Scholar 

  • Yakovlev MS, Yoffe MD (1957) On some peculiar features in the embryogeny of Paeonia L. Phytomorphology 7:74–82

    Google Scholar 

  • Yan H, Yang H-Y, Jensen WA (1991) Ultrastructure of the developing embryo sac of sunflower (Helianthus annuus) before and after fertilization. Can J Bot 69:191–202

    Google Scholar 

  • Yeung EC (1980) Embryogeny of Phaseolus: the role of the suspensor. Z Pflanzenphysiol 96:17–28

    Google Scholar 

  • Yeung EC, Brown DCW (1982) The osmotic environment of developing embryos of Phaseolus vulgaris. Z Pflanzenphysiol 106:149–156

    Google Scholar 

  • Yeung EC, Clutter ME (1979) Embryogeny of Phaseolus coccineus: the ultrastructure and development of the suspensor. Can J Bot 57:120–136

    Google Scholar 

  • Yeung EC, Sussex IM (1979) Embryogeny of Phaseolus coccineus: the suspensor and the growth of the embryo-proper in vitro. Z Pflanzenphysiol 91:423–433

    CAS  Google Scholar 

  • Zenkteler M, Nitzsche W (1985) In vitro culture of ovules of Triticum aestivum at early stages of embryogenesis. Plant Cell Rep 4:168–171

    Google Scholar 

  • Ziebur NK, Brink RA, Graf LH, Stahmann MA (1950) The effect of casein hydrolysate on the growth in vitro of immature Hordeum embryos. Am J Bot 37:144–148

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Establishment of the Embryo Body Plan — A Reassessment of Cell Lineage and Cell Fate. In: Double Fertilization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27792-7_2

Download citation

Publish with us

Policies and ethics