Skip to main content

The metazoan meiofauna associated with a cold-water coral degradation zone in the Porcupine Seabight (NE Atlantic)

  • Chapter
Cold-Water Corals and Ecosystems

Part of the book series: Erlangen Earth Conference Series ((ERLANGEN))

Abstract

The metazoan meiofauna associated with Lophelia pertusa reef degradation zones in the Belgica Mound province (Porcupine Seabight, North-East Atlantic) was studied in the framework of the Atlantic Coral Ecosystem Study (ACES; EC Fifth Framework Research Program). Attention was focused on the influence of and differences between different microhabitat types: dead coral fragments, glass sponge skeletons and the underlying sediment. This study demonstrates the importance of dead Lophelia pertusa framework and associated substrates for meiofauna along the European continental margins. The presence of these large biogenic structures on the seafloor of the continental margin (1) enables more taxa to be present and (2) particularly favours harpacticoid copepods, naupliar larvae and polychaetes. The meio-epifaunal community on these substrates significantly differs from the meio-infaunal community in the underlying sediment. This is mainly due to a much lower dominance of nematodes and a higher relative abundance of most other taxa, especially harpacticoids, naupliar larvae and polychaetes, in the latter habitat. This situation is comparable to that of epiphytic assemblages. Dominance of nematodes is low. The meio-infaunal assemblage in the underlying sediment is characterized by low densities. There are clear indications that cold-water coral degradation zones are biologically very diverse, in terms of species richness as well as equitability. Of all microhabitat types, coral fragments support the most diverse communities, whereas the underlying sediment is the least diverse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller JY (1989) Quantifying sediment disturbance by bottom currents and its effect on benthic communities in a deep-sea western boundary zone. Deep-Sea Res 36: 901–934

    Article  Google Scholar 

  • Aller JY (1997) Benthic community response to temporal and spatial gradients in physical disturbance within a deep-sea western boundary region. Deep-Sea Res I 44: 39–69

    Google Scholar 

  • Bell SS, Walters K, Kern JC (1984) Meiofauna from seagrass habitats: a review and prospectus for future research. Estuaries 7(4a): 331–338

    Google Scholar 

  • Beyer A, Schenke HW, Klenke M, Niederjasper F (2003) High resolution bathymetry of the eastern slope of the Porcupine Seabight. Mar Geol 198: 27–54

    Article  Google Scholar 

  • Billett DSM, Lampitt RS, Rice AL (1983) Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302: 520–522

    Article  Google Scholar 

  • Burdon-Jones C, Tambs-Lyche H (1960) Observations on the fauna of the North Brattholmen stone-coral reef near Bergen. Ã…rb Univ Bergen, Mat-Naturv Ser 4: 1–24

    Google Scholar 

  • Castillo-Fernandez D, Lambshead PJD (1990) Revision of the genus Elzalia Gerlach, 1957 (Nematoda: Xyalidae) including three new species from an oil producing zone in the Gulf of Mexico, with a discussion of the sibling species problem. Bull Brit Mus Nat Hist 56: 63–71

    Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral J Ecol 18: 117–143

    Google Scholar 

  • Coull BC (1988) Ecology of the marine meiofauna. In: Higgins RP, Thiel H (eds) Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington, pp 18–38

    Google Scholar 

  • Coull BC, Creed EL, Eskin RA, Montagna PA, Palmer MA, Wells JBJ (1983) Phytal meiofauna from the rocky intertidal at Murrells Inlet, South Carolina. Trans Amer Microsc Soc 102: 380–389

    Google Scholar 

  • Danovaro R, Fraschetti S (2002) Meiofaunal vertical zonation on hard-bottoms: comparison with soft-bottom meiofauna. Mar Ecol Progr Ser 230: 159–169

    Google Scholar 

  • De Backer A (2002) The biodiversity of the macrofauna associated with the cold water coral Lophelia in the Porcupine Seabight. Unpubl MSc thesis, Ghent Univ

    Google Scholar 

  • De Mol B (2002) Development of coral banks in Porcupine Seabight (SW Ireland): a multidisciplinary approach. Unpubl PhD thesis, Ghent Univ

    Google Scholar 

  • De Mol B, Van Rensbergen P, Pillen S, Van Herreweghe K, Van Rooij D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet JP (2002) Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol 188: 193–231

    Google Scholar 

  • De Troch M, Gurdebeke S, Fiers F, Vincx M (2001) Zonation and structuring factors of meiofauna communities in a tropical seagrass bed (Gazi Bay, Kenya). J Sea Res 45: 45–61

    Google Scholar 

  • Dons C (1944) Norges korallrev. K Norske Vidensk Selsk Forhandl 16: 37–82

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67: 356–366

    Google Scholar 

  • FossÃ¥ JH, Mortensen PB (1998) Artsmangfoldet pÃ¥ Lophelia-korallrev og metoder for overvÃ¥kning. Fisken Havet 17: 1–95

    Google Scholar 

  • Freiwald A, Wilson JB (1998) Taphonomy of modern deep, cold-temperate water coral reefs. Hist Biol 13: 37–52

    Google Scholar 

  • Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, West Finnmark, Northern Norway. SEPM Spec Publ 56: 141–162

    Google Scholar 

  • Freiwald A, Hühnerbach V, Lindberg B, Wilson JB, Campbell J (2002) The Sula Reef Complex, Norwegian Shelf. Facies 47: 179–200

    Google Scholar 

  • Giere O (1993) Meiobenthology: the microscopic fauna in aquatic sediments. Springer, Berlin Heidelberg

    Google Scholar 

  • Gooday AJ (1988) A response by benthic Foraminifera to the deposition of phytodetritus in the deep sea. Nature 332: 70–73

    Article  Google Scholar 

  • Gooday AJ (2002) Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J Oceanogr 58: 305–332

    Article  Google Scholar 

  • Gooday AJ, Lambshead PJD (1989) Influence of seasonally deposited phytodetritus on benthic foraminiferal populations in the bathyal northeast Atlantic: the species response. Mar Ecol Progr Ser 58: 53–67

    Google Scholar 

  • Gooday AJ, Pfannkuche O, Lambshead PJD (1996) An apparent lack of response by metazoan meiofauna to phytodetrital deposition in the bathyal North-Eastern Atlantic. J Mar Biol Ass UK 76: 297–310

    Google Scholar 

  • Graf G, Bengtson W, Diesner U, Schultz R, Theede H (1982) Benthic response to sedimentation of a spring phytoplankton bloom: process and budget. Mar Biol 67: 201–208

    Article  Google Scholar 

  • Hall MO, Bell SS (1993) Meiofauna on the seagrass Thalassia testudinum: population characteristics of harpacticoid copepods and associations with algal epiphytes. Mar Biol 116: 137–146

    Article  Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Ann Rev 23: 399–489

    Google Scholar 

  • Higgins RP (1988) Kinorhyncha. In: Higgins RP, Thiel H (eds) Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington, pp 328–331

    Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432

    Google Scholar 

  • Hurlbert SH (1971) The non-concept of species diversity: a critique and alternative parameters. Ecology 52: 577–586

    Google Scholar 

  • Jarvis SC, Seed R (1996) The meiofauna of Ascophyllum nodosum (L.) Le Jolis: characterization of the assemblages associated with two common epiphytes. J Exp Mar Biol Ecol 199: 249–267

    Article  Google Scholar 

  • Jensen A, Frederiksen R (1992) The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinaria) on the Faroe shelf. Sarsia 77: 53–69

    Google Scholar 

  • Lambshead PJD (1993) Recent developments in marine benthic biodiversity research. Océanis 19: 5–24

    Google Scholar 

  • Lampitt RS (1985) Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res 32: 885–897

    Article  Google Scholar 

  • Le Danois E (1948) Les profondeurs de la mer. Payot, Paris

    Google Scholar 

  • Lewis JB, Hollingworth CE (1982) Leaf epifauna of the seagrass Thalassia testudinum. Mar Biol 71: 41–49

    Article  Google Scholar 

  • Mortensen PB, Hovland M, Brattegard T, Farestveit R (1995) Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64° N on the Norwegian shelf: structure and associated megafauna. Sarsia 80: 145–158

    Google Scholar 

  • Mortensen PB (2000) Lophelia pertusa (Scleractinia) in Norwegian waters: distribution, growth, and associated fauna. Thesis submitted in partial fulfillment of the requirements for the degree of Dr. scient. Depart Fish Marine Biol, Univ Bergen

    Google Scholar 

  • Neira C, Gad G, Arroyo NL, Decraemer W (2001) Glochinema bathyperuvensis sp. in. (Nematoda, Epsilonematidae): A new species from Peruvian bathyal sediments, SE Pacific Ocean. Contrib Zool 70: 147–159

    Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley, New York

    Google Scholar 

  • Pfannkuche O (1985) The deep-sea meiofauna of the Porcupine Seabight and abyssal plain (NE Atlantic): population structure, distribution, standing stocks. Oceanol Acta 8: 343–353

    Google Scholar 

  • Pfannkuche O (1993) Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47°N, 20°W. Deep-Sea Res II 40: 135–149

    Article  Google Scholar 

  • Pfannkuche O, Thiel H (1987) Meiobenthic stocks and benthic activity on the NE-Svalbard Shelf and in the Nansen Basin. Polar Biol 7: 253–266

    Article  Google Scholar 

  • Pontoppidan E (1755) The Natural history of Norway. A Linde, London

    Google Scholar 

  • Rice AL, Billett DSM, Thurston MH, Lampitt RS (1991) The Institute of Oceanographic Sciences Biology Programme in the Porcupine Seabight: background and general introduction. J Mar Biol Ass UK 71: 281–310

    Google Scholar 

  • Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84: 315–406

    Google Scholar 

  • Soetaert K, Heip C (1989) The size structure of nematode assemblages along a Mediterranean deep-sea transect. Deep-Sea Res 36: 93–102

    Article  Google Scholar 

  • Soltwedel T (2000) Metazoan meiobenthos along continental margins: a review. Progr Oceanogr 46: 59–84

    Article  Google Scholar 

  • Soltwedel T, Pfannkuche O, Thiel H (1996) The size structure of deep-sea meiobenthos in the North-Eastern Atlantic: nematode size spectra in relation to environmental variables. J Mar Biol Ass UK 76: 327–344

    Article  Google Scholar 

  • Thiel H (1975) The size structure of the deep-sea benthos. Int Rev Ges Hydrobiol 60: 575–606

    Google Scholar 

  • Thiel H (1983) Meiobenthos and nanobenthos of the deep sea. In: Rowe GT (ed) Deep Sea Biology. The Sea. 8. John Wiley and Sons, New York, pp 167–230

    Google Scholar 

  • Thiel H, Pfannkuche O, Shriever G, Lochte K, Gooday AJ, Hemleben C, Mantoura RFG, Turley CM, Patching JW, Riemann F (1990) Phytodetritus on the deep-sea floor in a central oceanic region of the Northeast Atlantic. Biol Oceanogr 6: 203–239

    Google Scholar 

  • Thistle D, Levin LA (1998) The effect of experimentally increased near-bottom flow on metazoan meiofauna at a deep-sea site, with comparison data on macrofauna. Deep-Sea Res 45: 625–638

    Google Scholar 

  • Thistle D, Levin LA, Gooday AJ, Pfannkuche O, Lambshead PJD (1999) Physical reworking by near-bottom flow alters the metazoan meiofauna of Fieberling Guyot (northeast Pacific). Deep-Sea Res 46: 2041–2052

    Google Scholar 

  • Vanaverbeke J, Soetaert K, Heip C, Vanreusel A (1997) The metazoan meiobenthos along the continental slope of the Goban Spur (NE Atlantic). J Sea Res 38: 93–107

    Article  Google Scholar 

  • Van Gaever S (2001) Gemeenschapsanalyse van macrofauna geassocieerd met koudwaterkoraalriffen in de NO Atlantische Oceaan. Unpubl undergraduate thesis, Ghent Univ

    Google Scholar 

  • Vanreusel A, Vincx M, Bett BJ, Rice AL (1995a) Nematode biomass spectra at two abyssal sites in the NE Atlantic with a contrasting food supply. Int Rev Ges Hydrobiol 80: 287–296

    Google Scholar 

  • Vanreusel A, Vincx M, Schram D, Van Gansbeke D (1995b) On the vertical distribution of the metazoan meiofauna in shelf break and upper slope habitats of the NE Atlantic. Int Rev Ges Hydrobiol 80: 1–14

    Google Scholar 

  • Van Rooij D, De Mol B, Huvenne V, Ivanov M, Henriet JP (2003) Seismic evidence of current-controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland. Mar Geol 195: 31–53

    Google Scholar 

  • Van Rooij D, Blamart D, Richter T, Wheeler A, Kozachenko M, Henriet J-P (submitted) Quaternary drift sediment dynamics in the Belgica mound province, Porcupine Seabight: a multidisciplinary approach. Int J Earth Sci

    Google Scholar 

  • Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. Cab Int, pp 187–195

    Google Scholar 

  • Vincx M, Bett BJ, Dinet A, Ferrero T, Gooday AJ, Lambshead PJD, Pfannkuche O, Soltwedel T, Vanreusel A (1994) Meiobenthos of the deep northeast Atlantic. Adv Mar Biol 30: 2–88

    Google Scholar 

  • Wheeler AJ, Beyer A, Freiwald A, de Haas H, Huvenne VAI, Kozachenko M, Olu-Le Roy K (submitted) Morphology and environment of deep-water coral mounds on the NW European Margin. Int J Earth Sci

    Google Scholar 

  • White M (submitted) The hydrography of the Porcupine Bank and Sea Bight and associated carbonate mounds. Int J Earth Sci

    Google Scholar 

  • Williamson DI (1982) Larval morphology and diversity. In: Abele LG (ed) The Biology of Crustacea. 2. Embryology, Morphology, and Genetics. Academic Press, New York, pp 43–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raes, M., Vanreusel, A. (2005). The metazoan meiofauna associated with a cold-water coral degradation zone in the Porcupine Seabight (NE Atlantic). In: Freiwald, A., Roberts, J.M. (eds) Cold-Water Corals and Ecosystems. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27673-4_43

Download citation

Publish with us

Policies and ethics