Skip to main content

Growth, deposition, and facies of Pleistocene bathyal coral communities from Rhodes, Greece

  • Chapter

Part of the book series: Erlangen Earth Conference Series ((ERLANGEN))

Abstract

Modern and widespread deep-water coral ecosystems have become a major target of research during the last decades. So far, only a few fossil counterparts of such carbonate-secreting deep-water communities have been described. This scarcity might be a result of either, a possible miss-identification as a tropical deposit and/or the rare case of tectonic uplift and subsequent access to these deepwater deposits.

The early Pleistocene St. Paul’s Bay Limestone on the island of Rhodes (Greece) represents one of the few known examples of the bathyal ‘white coral community’ dominated by Lophelia pertusa which are exposed on land. This occurrence relates to a convergent tectonic setting with large-scale uplifts in the vicinity of the European-African plate boundary that is responsible for the exposure of these early Pleistocene deep-water deposits.

The geometry of the St. Paul’s Bay Limestone significantly differs from the mound-forming Lophelia occurrences as known, e.g., from the NE-Atlantic or the Florida Strait. Instead, it appears similar to the modern ‘white coral community’ of the western Mediterranean Sea that is usually associated with submarine cliffs. Much like the latter, the St. Paul’s Bay Limestone demonstrates that the growth and final deposition of the ‘white coral community’ was strongly influenced by the complex relief with steep submarine basement cliffs generated by horst-graben systems. These submarine cliffs not only provided the main habitat for the ‘white coral community’, they also explain recurrent instability and redeposition by debris falls along the submarine cliffs. Such a debris fall mechanism is strongly suggested by: (1) the steep slope angles (>30°), (2) the short transport distance (<20 m), (3) the wedge-like geometry, (4) the lack of grading, (5) the fabric complexity with incorporated fragments of hardgrounds, intraclasts and slightly consolidated sediment, (6) geopetal structures of various directions, thus indicating multiple resedimentation events, and (7) the variety of fragmentation and bioerosion. This resulted in the final deposition of the ‘white coral community’ (1) at the foot of submarine cliffs and (2) in neptunian dykes and, to a minor extent (3) in erosional depressions of the basement rock. In conclusion, the basic characters of the St. Paul’s Bay Limestone in terms of the initial facies, fabric and fauna largely match those described for lithoherms (Florida Strait). The enhanced complexity in terms of the final fabric and the wedge-like geometry appear due to multiple resedimentation events via debris falls along submarine cliffs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghib F, Bernoulli D, Weissert H (1991) Hardground formation in the Bannock Basin, eastern Mediterranean. Mar Geol 100: 103–113

    Article  Google Scholar 

  • Alexandersson ET (1979) Marine maceration of skeletal carbonates in the Skagerrak, North Sea. Sedimentology 26: 845–852

    Google Scholar 

  • Allouc J (1990) Quaternary crusts on slopes of the Mediterranean Sea: A tentative explanation for their genesis. Mar Geol 94: 205–238

    Article  Google Scholar 

  • Bernoulli D, McKenzie JA (1981) Hardground formation in the Hellenic Trench: pensaline to hypersaline marine carbonate diagenesis. In: Dercourt J (ed) Programme HEAT, Campagne Submersible. Les Fossés Helléniques. Résult Campagnes Mer Publ CNEXO 23, pp 197–213

    Google Scholar 

  • Best MB (1969) Étude systématique et écologique des madréporaires de la region de Banyulssurmer (Pyrénées-orientales). Vie Milieu 20: 293–325

    Google Scholar 

  • Bromley RG (2005) Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 895–914

    Google Scholar 

  • Bromley RG, Allouc J (1992) Trace fossils in bathyal hardgrounds, Mediterranean Sea. Ichnos 2: 43–54

    Article  Google Scholar 

  • Bromley RG, Hanken N-M (2003) Structure and function of large, lobed Zoophycos, Pliocene of Rhodes, Greece. Palaeogeogr Palaeoclimatol Palaeoecol 192: 79–100

    Google Scholar 

  • De Mol B, van Rensbergen P, Pillen S, van Herreweghe K, van Rooji D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet JP (2002) Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol 188: 193–231

    Google Scholar 

  • Delibrias G, Taviani M (1985) Dating the death of Mediterranean deep-sea scleractinian corals. Mar Geol 62: 175–180

    Google Scholar 

  • Di Geronimo I, Messina C, Rosso A, Sanfilippo R, Sciuto F, Vertino A (2005) Enhanced biodiversity on the deep: Early Pleistocene coral communities from southern Italy. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 61–86

    Google Scholar 

  • Drzewiecki PA, Simó JA (2002) Depositional processes, triggering mechanisms and sediment composition of carbonate gravity flow deposits: examples from the Late Cretaceous of the south-central Pyrenees, Spain. Sediment Geol 146: 155–189

    Article  Google Scholar 

  • Einsele G (2000) Gravity Mass Flow Deposits and Turbidites. In: Einsele G (ed) Sedimentary Basins. Springer, Berlin Heidelberg, pp 210–234

    Google Scholar 

  • Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean Margin Systems. Springer, Berlin Heidelberg, pp 365–385

    Google Scholar 

  • Freiwald A, Wilson JB (1998) Taphonomy of modern deep, cold-temperate water coral reefs. Hist Biol 13: 37–52

    Google Scholar 

  • Freiwald A, Hühnerbach V, Lindberg B, Wilson JB, Campbell J (2002) The Sula Reef complex, Norwegian Shelf. Facies 47: 179–200

    Google Scholar 

  • Gaetani M, Sacca D (1984) Brachiopodi batiali nel Pliocene e Pleistocene di Sicilia e Calabria. Riv ital Paleont Stratigr 90: 407–458

    Google Scholar 

  • Glaub I (1999) Paleobathymetric reconstructions and fossil microborings. Bull Geol Soc Denmark 45: 143–146

    Google Scholar 

  • Hanken N-M, Bromley RG, Miller J (1996) Plio-Pleistocene sedimentation in coastal grabens, north-east Rhodes, Greece. Geol J 31: 393–418

    Google Scholar 

  • Hansen KS (1999) Development of a prograding carbonate wedge during sea level fall: Lower Pleistocene of Rhodes, Greece. Sedimentology 46: 559–576

    Article  Google Scholar 

  • Hofrichter R (2001) Das Mittelmeer: Fauna, Flora, Ökologie — Teil 1. Spektrum, Heidelberg

    Google Scholar 

  • Hofrichter R (2003) Das Mittelmeer: Fauna, Flora, Ökologie — Teil 2. Spektrum, Heidelberg

    Google Scholar 

  • Huvenne VAI, Beyer A, de Haas H, DeKindt K, Henriet JP, Kozachenko M, Olu-Le Roy K, Wheeler AJ, TOBI/Pelagia 197 and CARACOLE cruise participants. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 535–569

    Google Scholar 

  • James NP, Clarke JAD (1997) Cool-Water Carbonates. SEPM Spec Publ 56, 440 pp

    Google Scholar 

  • Jüssen E (1890) Über pliocäne Korallen von der Insel Rhodus. Sitzber kais Akad Wiss, mathnatw Cl 99: 13–24

    Google Scholar 

  • Lewy Z (1981) Maceration of calcareous skeletons. Sedimentology 28: 893–895

    Google Scholar 

  • Logan A (1979) The recent Brachiopoda of the Mediterranean Sea. Bull Inst Océanogr Monaco 72: 7–21

    Google Scholar 

  • Major RP, Wilber RJ (1991) Crystal habit, geochemistry, and cathodoluminescence of magnesian calcite marine cements from the lower slope of Little Bahama Bank. Bull Geol Soc Amer 103: 461–471

    Google Scholar 

  • Mascle J, Le Cleac’h A, Jongsma D (1986) The eastern Hellenic margin from Crete to Rhodes: Example of progressive collision. Mar Geol 73: 145–168

    Google Scholar 

  • McKenzie JA, Bernoulli D (1982) Geochemical variations in Quaternary hardgrounds from the Hellenic Trench region and possible relationship to their tectonic setting. Tectonophysics 86: 149–157

    Article  Google Scholar 

  • Messing CG, Neumann AC, Lang JC (1990) Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Strait of Florida. Palaios 5: 15–30

    Google Scholar 

  • Meulenkamp E, de Mulder EFJ, van der Weerd A (1972) Sedimentary history and paleogeography of the late Cenozoic of the Island of Rhodes. Z dt geol Ges 123: 541–553

    Google Scholar 

  • Millero FJ, Morse J, Chen C-T (1979) The carbonate system in the western Mediterranean Sea. Deep-Sea Res 26A: 1395–1404

    Google Scholar 

  • Milliman JD, Müller J (1973) Precipitation and lithification of magnesium calcite in the deep-sea sediments of the eastern Mediterranean Sea. Sedimentology 20: 29–45

    Google Scholar 

  • Milliman JD, Müller J (1977) Characteristic and genesis of shallow-water and deep-sea limestones. In: Andersen NR, Malahoff A (eds) The fate of fossil fuel CO2 in the oceans. Plenum, New York, pp 655–672

    Google Scholar 

  • Moissette P, Spjeldnæs N (1995) Plio-Pleistocene deep-water bryozoans from Rhodes, Greece. Palaeontology 38: 771–799

    Google Scholar 

  • Montenat C, Barrier P, Ott d’Estevou P (1991) Some aspects of the recent tectonics in the Strait of Messina, Italy. Tectonophysics 194: 203–215

    Article  Google Scholar 

  • Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54: 83–104

    Google Scholar 

  • Mortensen PB, Hovland M, Brattegard T, Farestveit R (1995) Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64°N on the Norwegian shelf: structure and associated megafauna. Sarsia 80: 145–158

    Google Scholar 

  • Müller J, Fabricius F (1974) Magnesian-calcite nodules in the Ionian deep sea: an actualistic model for the formation of some nodular limestones. IAS, Spec Publ 1: 235–247

    Google Scholar 

  • Müller J, Staesche W (1973) Precipitation and diagenesis of carbonates in the Ionian deepsea. Bull Geol Soc Greece 10: 145–151

    Google Scholar 

  • Mulder T, Alexander J (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48: 269–299

    Article  Google Scholar 

  • Mullins HT, Neumann AC, Wilber RJ, Boardman, MR (1980) Nodular carbonate sediment on Bahamian slopes: possible precursors to nodular limestones. J Sediment Petrol 50: 117–131

    Google Scholar 

  • Mutti E, Orombelli G, Pozzi R (1970) IX. Geological map of the Island of Rhodes (Greece) explanatory notes. Ann géol Pays hellén 22: 79–241

    Google Scholar 

  • Nelson CS (1988) An introductory perspective on non-tropical shelf carbonates. Sediment Geol 60: 3–12

    Google Scholar 

  • Nelson CS, Freiwald A, Titschack J, List S (2001) Lithostratigraphy and sequence architecture of temperate mixed siliciclastic-carbonate facies in the new Plio-Pleistocene section at Plimiri, Rhodes Island (Greece). Dept Earth Sci, Univ Waikato, Occas Rep 25: 1–50

    Google Scholar 

  • Nemec W (1990) Aspects of sediment movement on steep delta slopes. IAS, Spec Publ 10: 29–73

    Google Scholar 

  • Neumann AC, Kofoed JW, Keller GH (1977) Lithoherms in the Straits of Florida. Geology 5: 4–10

    Article  Google Scholar 

  • Pérès JM, Picard J (1964) Nouveau manuel de bionomie benthique de la Mer Méditerranée. Recl Trav Station Mar Endoume, Bull 31, 137 pp

    Google Scholar 

  • Remia A, Taviani M (2004) Shallow-buried Pleistocene Madrepora-dominated coral mounds on a muddy continental slope, Tuscan Archipelago, NE Tyrrhenian Sea. Facies 50, DOI 10.1007/s10347-004-0029-2

    Google Scholar 

  • Sartori R (1974) Modern deep-sea Magnesian calcite in the central Tyrrhenian Sea. J Sediment Petrol 44: 1313–1322

    Google Scholar 

  • Sartori R (1980) Factors affecting the distribution of ahermatypic corals on the Mediterranean seafloor: a probabilistic study. Deep-Sea Res 27A: 655–663

    Google Scholar 

  • Scoffin TP (1993) Microfabrics of carbonate muds in reefs. In: Rezak R, Lavoie DL (eds) Carbonate Microfabrics. Frontiers in Sedimentary Geology. Springer, Berlin Heidelberg, pp 65–74

    Google Scholar 

  • Squires DF (1964) Fossil coral thickets in Wairarapa, New Zealand. J Paleont 38: 904–915

    Google Scholar 

  • Taviani M, Colantoni P (1979) Thanatocoenoses Wurmiennes associées aux coraux blancs. Rapp Comm Int Mer Méditerr 25/26: 141–142

    Google Scholar 

  • Taviani M, Remia A, Corselli C, Freiwald A, Malinverno E, Mastrototaro F, Savini A, Tursi A, CORAL Shipboard Staff (2004): First geo-marine survey of living cold-water Lophelia reefs in the Ionian Sea (Mediterranean Basin). Facies 50, DOI 10.1007/s10347-004-0039-0

    Google Scholar 

  • Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 137–156

    Google Scholar 

  • Tunesi L, Diviacco G (1997) Observations by submersible on the bottoms off shore Portefino promontory (Ligurian Sea). Atti 12° Congr Assoc Ital Oceanol Limnol 1: 61–74

    Google Scholar 

  • Vafidis D, Koukouras A, Voultsiadou-Koukoura E (1997) Actinaria, Corallimorpharia, and Scleractinia (Hexacorallia, Anthozoa) of the Aegean Sea, with a checklist of the Eastern Mediterranean and Black Sea species. Israel J Zool 43: 55–70

    Google Scholar 

  • Van Rooij D, de Mol B, Huvenne V, Ivanov M, Henriet J-P (2003) Seismic evidence of current-controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland. Mar Geol 195: 31–53

    Google Scholar 

  • Van Weering TCE, de Haas H, de Stigter HC, Lykke-Andersen H, Kouvaev I (2003) Structure and development of giant carbonate mounds at the SW and SE Rockall Trough margins, NE Atlantic Ocean. Mar Geol 198: 67–81

    Google Scholar 

  • White M, Mohn C, de Stigter H, Mottram G (2005) Deep-water coral development as a function of hydrodynamics and surface productivity around the submarine banks of the Rockall Trough, NE Atlantic. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 503–514

    Google Scholar 

  • Wilber RJ, Neumann AC (1993) Effects of submarine cementation on microfabrics and physical properties of carbonate slope deposits, Northern Bahamas. In: Rezak R, Lavoie DL (eds) Carbonate Microfabrics. Frontiers in Sedimentary Geology. Springer, Berlin Heidelberg, pp 79–94

    Google Scholar 

  • Zabala M, Maluquer P, Harmelin J-G (1993) Epibiotic bryozoans on deep-water scleractinian corals from the Catalonia slope (western Mediterranean, Spain, France). Sci Mar 57: 65–78

    Google Scholar 

  • Zibrowius H (1979) Campagne de la Calypso en Méditerranée nord-orientale (1955, 1956, 1960, 1964). 7. Scléractiniaires. Ann Inst Océanogr Paris 55,Suppl: 7–28

    Google Scholar 

  • Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-orientale. Mem Inst Océanogr Monaco 11: 227

    Google Scholar 

  • Zibrowius H (1987) Scléractiniaires et Polychètes Serpulidae des faunes bathyales actuelle et plio-pléistocène de Méditerranée. Doc Trav 11: 255–257

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Titschack, J., Freiwald, A. (2005). Growth, deposition, and facies of Pleistocene bathyal coral communities from Rhodes, Greece. In: Freiwald, A., Roberts, J.M. (eds) Cold-Water Corals and Ecosystems. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27673-4_3

Download citation

Publish with us

Policies and ethics