Skip to main content

Quantitative Diffusion Imaging

  • Chapter
  • 1662 Accesses

Part of the book series: Medical Radiology Diagnostic Imaging ((Med Radiol Diagn Imaging))

Conclusions

In the mid 1990s, DWI developed from a technically difficult and novel approach to a routine acquisition technique on clinical scanners. It now takes under 1 min to be acquired and can bring valuable information and pathophysiologic insight in many diseases. The same transition is currently happening in DTI, which is expected to contribute much novel clinical and neuroscientific information presently not accessible by other technologies. For instance, DTI is the only approach for tracking brain white matter fibers non-invasively in the human brain. In combination with functional MRI, which can outline activated cortical networks, DTI may thus provide clues on functional connectivity. DTI is also increasingly been used to demonstrate subtle connectivity anomalies in a variety of dysfunctions, such as cerebral palsy, cancer, stroke, dyslexia, or diseases including multiple sclerosis and schizophrenia. Before DTI can become true clinical routine, some progress is still needed. This relates to factors such as scan time and therefore, patient tolerance, and the complexity of post-processing (now mostly off-line) required for the method. These issues are already being addressed. For instance, clinical equipment with whole-body gradients of up to 8 G/cm is becoming available, which, together with the clinical availability of 3-Tesla magnets will allow the use of multi-directional DTI at high spatial resolution (around 2×2×2 mm3) in a few minutes. Another issue that is often discussed is which quantitative parameter to choose, FA, RA, etc. Actually, these anisotropies are all related and the only advantage of using one versus the other will be based on contrast to noise, which depends on anisotropy of the particular structure being studied. It would be most helpful if all researchers would report the eigenvalues so that others can calculate any parameter they want. A further essential consideration for data analysis and reporting is the influence of partial volume effects between different structures. This is especially problematic for group studies or development studies.

However, it is safe to say that DTI and tractography provide us with a new opportunity for quantitative diagnosis of white matter structures in living humans and to assess changes due to brain disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander AL, Hasan KM, Lazar M, Tsuruda JS, Parker DL (2001) Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 45:770–780

    Article  PubMed  CAS  Google Scholar 

  • Andrasko J (1976b) Water diffusion permeability of human erythrocytes studied by a pulsed gradient NMR technique. Biochim Biophys Acta 428:304–311

    PubMed  CAS  Google Scholar 

  • Arfanakis K et al (2002) Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23:794–802

    PubMed  Google Scholar 

  • Arfanakis K et al (2002) Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging 20:511–519

    PubMed  Google Scholar 

  • Assaf BA et al (2003) Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy. AJNR Am J Neuroradiol 24:1857–1862

    PubMed  Google Scholar 

  • Assaf Y, Cohen Y (2000) Assignment of the water slow-diffusing component in the central nervous system using q-space diffusion MRS: implications for fiber tract imaging. Magn Reson Med 43:191–199

    Article  PubMed  CAS  Google Scholar 

  • Baird AE, Warach S (1998) Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 18:583–609

    PubMed  CAS  Google Scholar 

  • Bammer R et al (2002)Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 48:128–136

    Article  PubMed  Google Scholar 

  • Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis — a technical review. NMR Biomed 15:456–467

    Article  PubMed  Google Scholar 

  • Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219

    PubMed  CAS  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994a) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  PubMed  CAS  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994b) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    PubMed  CAS  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vitro fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    PubMed  CAS  Google Scholar 

  • Bastin ME, Sinha S, Whittle IR, Wardlaw JM (2002) Measurements of water diffusion and T1 values in peritumoural oedematous brain. Neuroreport 13:1335–1340

    PubMed  Google Scholar 

  • Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system — a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  • Beaulieu C, Allen PS (1994) Determinants of anisotropic water diffusion in nerves. Magn Reson Med 31:394–400

    PubMed  CAS  Google Scholar 

  • Bergui M, Zhong J, Bradac GB, Sales S (2001) Diffusion-weighted images of intracranial cyst-like lesions. Neuroradiology 43:824–829

    Article  PubMed  CAS  Google Scholar 

  • Burns J et al (2003) Structural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study. Br J Psychiatry 182:439–443

    PubMed  CAS  Google Scholar 

  • Callaghan PT, Coy A, MacGowan D, Packer KJ, Zelaya FO (1991) Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature 351:467–469

    Article  CAS  Google Scholar 

  • Callaghan PT, Codd SL, Seymour JD (1999) Spatial coherence phenomena arising from translational spin motion in gradient spin echo experiments. Concepts Magn Reson 11:181–202

    Article  CAS  Google Scholar 

  • Chun T, Ulug AM, van Zijl PC (1998) Single-shot diffusion-weighted trace imaging on a clinical scanner. Magn Reson Med 40:622–628

    PubMed  CAS  Google Scholar 

  • Clark CA, Werring DJ (2002) Diffusion tensor imaging in spinal cord: methods and applications — a review. NMR Biomed 15:578–586

    Article  PubMed  Google Scholar 

  • Cohen Y, Assaf Y (2002) High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues — a technical review. NMR Biomed 15:516–542

    Article  PubMed  Google Scholar 

  • Conturo TE, McKinstry RC, Akbudak E, Robinson BH (1996) Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results. Magn Reson Med 35:399–412

    PubMed  CAS  Google Scholar 

  • Conturo TE et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427

    Article  PubMed  CAS  Google Scholar 

  • Cory DG, Garroway AN (1990) Measurement of translational displacement probabilities by NMR — an indicator of compartmentation. Magn Reson Med 14:435–444

    PubMed  CAS  Google Scholar 

  • Davis D et al (1994) Rapid monitoring of changes in water diffusion coefficients during reversible ischemia in cat and rat brain. Magn Reson Med 31:454–460

    PubMed  CAS  Google Scholar 

  • Decanniere C, Eleff S, Davis D, van Zijl PCM (1995) Correlation of rapid changes in the average water diffusion constant and the concentrations of lactate and ATP breakdown products during global ischemia in cat brain. Magn Reson Med 34:343–352

    PubMed  CAS  Google Scholar 

  • Demir A et al (2003) Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology 229:37–43

    PubMed  Google Scholar 

  • Dong Q et al (2004) Clinical applications of diffusion tensor imaging. J Magn Reson Imaging 19:6–18

    Article  PubMed  Google Scholar 

  • Donnan GA, Davis SM (2002) Neuroimaging, the ischaemic penumbra, and selection of patients for acute stroke therapy. Lancet Neurol 1:417–425

    PubMed  Google Scholar 

  • Eichler FS et al (2002) Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology 225:245–252

    PubMed  Google Scholar 

  • Eriksson SH, Rugg-Gunn FJ, Symms MR, Barker GJ, Duncan JS (2001) Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 124:617–626

    PubMed  CAS  Google Scholar 

  • Frank LR (2001) Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 45:935–939

    PubMed  CAS  Google Scholar 

  • Gillard JH et al (2001) MR diffusion tensor imaging of white matter tract disruption in stroke at 3 T. Br J Radiol 74:642–647

    PubMed  CAS  Google Scholar 

  • Glenn OA et al (2003) DTI-based three-dimensional tractography detects differences in the pyramidal tracts of infants and children with congenital hemiparesis. J Magn Reson Imaging 18:641–648

    Article  PubMed  Google Scholar 

  • Gonzalez RG et al (1999) Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 210:155–162

    PubMed  CAS  Google Scholar 

  • Hoon AH Jr et al (2002) Diffusion tensor imaging of periventricular leukomalacia shows affected sensory cortex white matter pathways. Neurology 59:752–756

    PubMed  Google Scholar 

  • Horsfield MA, Jones DK (2002) Applications of diffusion-weighed and diffusion tensor MRI to white matter diseases. NMR Biomed 15:570–577

    Article  PubMed  Google Scholar 

  • Huisman TA (2003)Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol 13:2283–2297

    Article  PubMed  Google Scholar 

  • Huppi PS et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590

    PubMed  CAS  Google Scholar 

  • Huppi PS et al (2001) Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 107:455–460

    Article  PubMed  CAS  Google Scholar 

  • Inder T et al (1999) Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. J Pediatr 134:631–634

    PubMed  CAS  Google Scholar 

  • Ito R et al (2001) Diffusion tensor brain MR imaging in X-linked cerebral adrenoleukodystrophy. Neurology 56:544–547

    PubMed  CAS  Google Scholar 

  • Jones DK, Simmons A, Williams SC, Horsfield MA (1999a) Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 42:37–41

    PubMed  CAS  Google Scholar 

  • Jones DK, Horsfield MA, Simmons A (1999b) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42:515–525

    PubMed  CAS  Google Scholar 

  • Jones DK et al (2000) Cluster analysis of diffusion tensor magnetic resonance images in human head injury. Neurosurgery 47:306–313; discussion 313-314

    Article  PubMed  CAS  Google Scholar 

  • Karger J, Pfeifer H, Heink W (1988) Principles and application of self-diffusion measurements by nuclear magnetic resonance. Adv Magn Reson 12:1–89

    Google Scholar 

  • Klingberg T et al (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25:493–500

    Article  PubMed  CAS  Google Scholar 

  • Kunimatsu A et al (2003) Three-dimensional white matter tractography by diffusion tensor imaging in ischaemic stroke involving the corticospinal tract. Neuroradiology 45:532–535

    PubMed  CAS  Google Scholar 

  • Lazar M, Alexander AL (2001) Proceeding of International Society of Magnetic Resonance in Medicine 506, Glasgow, UK

    Google Scholar 

  • Le Bihan D (2003)Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480

    PubMed  Google Scholar 

  • Le Bihan D, van Zijl P (2002) From the diffusion coefficient to the diffusion tensor. NMR Biomed 15:431–434

    PubMed  Google Scholar 

  • Le Bihan D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  • Lim KO, Helpern JA (2002) Neuropsychiatric applications of DTI — a review. NMR Biomed 15:587–593

    Article  PubMed  CAS  Google Scholar 

  • Liu AY, Maldjian JA, Bagley LJ, Sinson GP, Grossman RI (1999) Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol 20:1636–1641

    PubMed  CAS  Google Scholar 

  • Lori NF, Akbuda E, Snyder AZ, Shimony JS, Conturo TE (1999) International Society of Magnetic Resonance in Medicine 775, Denver, CO

    Google Scholar 

  • Lori NF, Akbudak JS, Shimony TS, Snyder RK, Conturo TE (2002) Diffusion tensor fiber tracking of brani connectivity: reliability analysis and biological results. NMR Biomed 15:494–515

    Google Scholar 

  • Lutsep HL et al (1997) Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann Neurol 41:574–580

    Article  PubMed  CAS  Google Scholar 

  • Makris N et al (1997) Morphometry of in vivo human white matter association pathways with diffusion weighted magnetic resonance imaging. Ann Neurol 42:951–962

    Article  PubMed  CAS  Google Scholar 

  • Mangin JF, Poupon C, Clark C, Le Bihan D, Bloch I (2002) Distortion correction and robust tensor estimation for MR diffusion imaging. Med Image Anal 6:191–198

    Article  PubMed  Google Scholar 

  • McKinstry RC et al (2002) A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns. Neurology 59:824–833

    PubMed  CAS  Google Scholar 

  • Minematsu K et al (1992) Diffusion-weighted magnetic resonance imaging: rapid and quantitative detection of focal brain ischemia. Neurology 42:235–240

    PubMed  CAS  Google Scholar 

  • Moonen CT, van Zijl PC, Le Bihan D, DesPres D (1990) In vivo NMR diffusion spectroscopy: 31P application to phosphorus metabolites in muscle. Magn Reson Med 13:467–477

    PubMed  CAS  Google Scholar 

  • Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies — a technical review. NMR Biomed 15:468–480

    Article  PubMed  Google Scholar 

  • Mori S, van Zijl PCM (1995) Diffusion weighting by the trace of the diffusion tensor within a single scan. Magn Reson Med 33:41–52

    PubMed  CAS  Google Scholar 

  • Mori S, Crain BJ, Chacko VP, van Zijl PCM (1999) Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  PubMed  CAS  Google Scholar 

  • Mori S et al (2001) Diffusion tensor imaging of the developing mouse brain. Magn Reson Med 46:18–23

    Article  PubMed  CAS  Google Scholar 

  • Mori S et al (2002) Imaging cortical association tracts in human brain. Magn Reson Med 47:215–223

    Article  PubMed  Google Scholar 

  • Moseley M (2002) Diffusion tensor imaging and aging — a review. NMR Biomed 15:553–560

    Article  PubMed  Google Scholar 

  • Moseley ME et al (1990a) Early detection of regional cerebral ischemia in cats: comparison of diffusion-and T2-weighted MRI and spectroscopy. Magn Reson Med 14:330–346

    PubMed  CAS  Google Scholar 

  • Moseley ME et al (1990b) Diffusion-weighted MR imaging of anisotropic water diffusion in the cat central nervous system. Radiology 176:439–445

    PubMed  CAS  Google Scholar 

  • Mukherjee P et al (2000) Differences between gray matter and white matter water diffusion in stroke: diffusion-tensor MR imaging in 12 patients. Radiology 215:211–220

    PubMed  CAS  Google Scholar 

  • Mukherjee P et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23:1445–1456

    PubMed  Google Scholar 

  • Neil J et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66

    PubMed  CAS  Google Scholar 

  • Neil J, Miller J, Mukherjee P, Huppi PS (2002) Diffusion tensor imaging of normal and injured developing human brain — a technical review. NMR Biomed 15:543–552

    Article  PubMed  CAS  Google Scholar 

  • Nusbaum AO, Tang CY, Buchsbaum MS, Wei TC, Atlas SW (2001) Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol 22:136–142

    PubMed  CAS  Google Scholar 

  • Ono J, Harada K, Mano T, Sakurai K, Okada S (1997) Differentiation of dys-and demyelination using diffusional anisotropy. Pediatr Neurol 16:63–66

    Article  PubMed  CAS  Google Scholar 

  • O’sullivan M et al (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57:632–638

    PubMed  CAS  Google Scholar 

  • Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526–540

    Article  PubMed  CAS  Google Scholar 

  • Pfefferbaum A et al (2000) Age-related decline in brain white matter anisotropy measured with spatially corrected echoplanar diffusion tensor imaging. Magn Reson Med 44:259–268

    Article  PubMed  CAS  Google Scholar 

  • Pfefferbaum A, Adalsteinsson E, Sullivan EV (2003) Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. J Magn Reson Imaging 18:427–433

    Article  PubMed  Google Scholar 

  • Pierpaoli C, Basser PJ (1996) Toward a quantitative assesment of diffusion anisotropy. Magn Reson Med 36:893–906

    PubMed  CAS  Google Scholar 

  • Pierpaoli C, Jezzard P, Basser PJ, Barnett A, DiChiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  • Pierpaoli C et al (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13:1174–1185

    Article  PubMed  CAS  Google Scholar 

  • Poupon C et al (2000) Regularization of diffusion-based direction maps for the tracking of brain white matter fascicules. NeuroImage 12:184–195

    Article  PubMed  CAS  Google Scholar 

  • Provenzale JM, Sorensen AG (1999) Diffusion-weighted MR imaging in acute stroke: theoretic considerations and clinical applications. AJR Am J Roentgenol 173:1459–1467

    PubMed  CAS  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  PubMed  CAS  Google Scholar 

  • Ptak T et al (2003) Cerebral fractional anisotropy score in trauma patients: a new indicator of white matter injury after trauma. AJR Am J Roentgenol 181:1401–1407

    PubMed  Google Scholar 

  • Ricci PE, Burdette JH, Elster AD, Reboussin DM (1999) A comparison of fast spin-echo, fluid-attenuated inversionrecovery, and diffusion-weighted MR imaging in the first 10 days after cerebral infarction. AJNR Am J Neuroradiol 20:1535–1542

    PubMed  CAS  Google Scholar 

  • Ries M, Jones RA, Dousset V, Moonen CT (2000) Diffusion tensor MRI of the spinal cord. Magn Reson Med 44:884–892

    Article  PubMed  CAS  Google Scholar 

  • Sach M et al (2004) Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 127:340–350

    Article  PubMed  Google Scholar 

  • Schlaug G et al (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53:1528–1537

    PubMed  CAS  Google Scholar 

  • Schlaug G, Siewert B, Benfield A, Edelman RR, Warach S (1997) Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 49:113–119

    PubMed  CAS  Google Scholar 

  • Shimony JS et al (1999) Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 212:770–784

    PubMed  CAS  Google Scholar 

  • Sinha S, Bastin ME, Whittle IR, Wardlaw JM (2002) Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR Am J Neuroradiol 23:520–527

    PubMed  Google Scholar 

  • Skare S, Hedehus M, Moseley ME, Li TQ (2000) Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson 147:340–352

    Article  PubMed  CAS  Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    PubMed  CAS  Google Scholar 

  • Sorenson AG et al (1996) Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planer MR imaging. Radiology 199:391–401

    Google Scholar 

  • Sorensen AG et al (1999) Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology 212:785–792

    PubMed  CAS  Google Scholar 

  • Sotak CH (2002) The role of diffusion tensor imaging in the evaluation of ischemic brain injury. NMR Biomed 15:561–569

    Article  PubMed  Google Scholar 

  • Steel RM et al (2001) Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) in schizophrenic subjects and normal controls. Psychiatry Res 106:161–170

    PubMed  CAS  Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  • Stieltjes B et al (2001) Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage 14:723–735

    Article  PubMed  CAS  Google Scholar 

  • Sun Z et al (2003) Abnormal anterior cingulum in patients with schizophrenia: a diffusion tensor imaging study. Neuroreport 14:1833–1836

    PubMed  Google Scholar 

  • Tuch DS, Wiegell MR, Reese TG, Belliveau JW, Wedeen V (2001) Proceeding of International Society of Magnetic Resonance in Medicine 502, Glasgow, UK

    Google Scholar 

  • Tummala RP, Chu RM, Liu HTT, Hall WA (2003) Application of diffusion tensor imaging to magnetic-resonance-guided brain tumor resection. Pediatr Neurosurg 39:39–43

    Article  PubMed  Google Scholar 

  • Ulug A, van Zijl PCM (1999) Orientation-independent diffusion imaging without tensor diagonalization: anisotropy definitions based on physical attributes of the diffusion ellipsoid. J Magn Reson Imaging 9:804–813

    Article  PubMed  CAS  Google Scholar 

  • Ulug AM, Beauchamp N, Bryan RN, van Zijl PCM (1997) Absolute quantitation of diffusion constants in human stroke. Stroke 28:483–490

    PubMed  CAS  Google Scholar 

  • Van Gelderen P et al (1994) Water diffusion and acute stroke. Magn Reson Med 31:154–163

    PubMed  Google Scholar 

  • Van Zijl PC et al (1991)Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion-weighted spectroscopy. Proc Natl Acad Sci USA 88:3228–3232

    PubMed  Google Scholar 

  • Van Zijl PCM, Davis D, Moonen CTW (1994) Diffusion spectroscopy in living systems. In: Gillies RJ (ed) NMR in physiology and biomedicine. Academic Press, San Diego, pp 185–198

    Google Scholar 

  • Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87

    PubMed  Google Scholar 

  • Warach S, Chien D, Li W, Ronthal MM, Edelman RR (1992) Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42:1717–1723

    PubMed  CAS  Google Scholar 

  • Warach S, Gaa D, Siewert B, Wielopolski P, Edelman RR (1995) Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol 37:231–241

    Article  PubMed  CAS  Google Scholar 

  • Warach S, Mosley M, Sorensen AG, Koroshetz W (1996a) Time course of diffusion imaging abnormalities in human stroke. Stroke 27:1254–1256

    PubMed  CAS  Google Scholar 

  • Warach S, Dashe JF, Edelman RR (1996b) Clinical outcome in ischemic stroke predicted by early diffusion-weighted and perfusion magnetic resonance imaging: a preliminary analysis. J Cereb Blood Flow Metab 16:53–59

    PubMed  CAS  Google Scholar 

  • Warach S, Boska M, Welch KM (1997) Pitfalls and potential of clinical diffusion-weighted MR imaging in acute stroke. Stroke 28:481–482

    PubMed  CAS  Google Scholar 

  • Welch KM et al (1995) A model to predict the histopathology of human stroke using diffusion and T2-weighted magnetic resonance imaging. Stroke 26:1983–1989

    PubMed  CAS  Google Scholar 

  • Westerhausen R et al (2003) The influence of handedness and gender on the microstructure of the human corpus callosum: a diffusion-tensor magnetic resonance imaging study. Neurosci Lett 351:99–102

    Article  PubMed  CAS  Google Scholar 

  • Wiegell M, Larsson H, Wedeen V (2000) Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology 217:897–903

    PubMed  CAS  Google Scholar 

  • Wilson M, Tench CR, Morgan PS, Blumhardt LD (2003) Pyramidal tract mapping by diffusion tensor magnetic resonance imaging in multiple sclerosis: improving correlations with disability. J Neurol Neurosurg Psychiatry 74:203–207

    PubMed  CAS  Google Scholar 

  • Wong EC, Cox RW, Song AW (1995) Optimized isotropic diffusion weighting. Magn Reson Med 34:139–143

    PubMed  CAS  Google Scholar 

  • Yang Q et al (1999) Serial study of apparent diffusion coefficient and anisotropy in patients with acute stroke. Stroke 30:2382–2390

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Zijl, P.C., Nagae-Poetscher, L., Mori, S. (2005). Quantitative Diffusion Imaging. In: Filippi, M., De Stefano, N., Dousset, V., McGowan, J.C. (eds) MR Imaging in White Matter Diseases of the Brain and Spinal Cord. Medical Radiology Diagnostic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27644-0_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-27644-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40230-5

  • Online ISBN: 978-3-540-27644-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics