Skip to main content

Scanning Ion Conductance Microscopy

  • Chapter

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnig G, Rohrer H (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61

    Article  Google Scholar 

  2. Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: Image recording with resolution λ/20. Appl Phys Lett 44: 651–653

    Article  Google Scholar 

  3. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  4. Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243:1586–1589

    CAS  Google Scholar 

  5. Martin Y, Wickramasinge HK (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50:1455–1457

    Article  Google Scholar 

  6. Sáenz JJ, García N, Grütter P, Meyer E, Heinzelmann H, Wiesendanger R, Rosenthaler L, Hidber HR, Güntherodt HJ (1987) Observation of magnetic forces by the atomic force microscope. J Appl Phys 62:4293–4295

    Article  Google Scholar 

  7. Martin Y, Abraham DW, Wickramasinghe HK (1988) High-resolution capacitance measurement and potentiometry by force microscopy. Appl Phys Lett 52:1103–1105

    Article  Google Scholar 

  8. Bard AJ, Fan F-RF, Kwak J, Lev O (1989) Scanning electrochemical microscopy. Introduction and principles. Anal Chem 61:132–138

    Article  CAS  Google Scholar 

  9. Hansma PK, Drake B, Marti O, Gould SAC, Prater CB (1989) The scanning ion-conductance microscope. Science 243:641–643

    CAS  Google Scholar 

  10. Prater CB, Drake B, Gould SAC, Hansma HG, Hansma PK (1990) Scanning ion-conductance microscope and atomic force microscope. Scanning 12:50–52

    Google Scholar 

  11. Olin H (1994) Design of a scanning probe microscope. Meas Sci Technol 5:976–984

    Article  Google Scholar 

  12. Proksch R, Lal R, Hansma PK, Morse D, Stucky G (1996) Imaging the Internal and External Pore Structure of Membranes in Fluid-Tapping mode Scanning Ion Conductance Microscopy. Biophys J 71:2155–2157

    CAS  Google Scholar 

  13. Schäffer TE, IonescuZanetti C, Proksch R, Fritz M, Walters DA, Almqvist N, Zaremba CM, Belcher AM, Smith BL, Stucky GD, Morse DE, Hansma PK (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem Mater 9:1731–1740

    Article  Google Scholar 

  14. Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys J 73:653–658

    CAS  Google Scholar 

  15. Nitz H, Kamp J, Fuchs H (1998) A combined scanning ion-conductance and shear-force microscope. Probe Microsc 1:187–200

    CAS  Google Scholar 

  16. Shevchuk AI, Gorelik J, Harding SE, Lab MJ, Klenerman D, Korchev YE (2001) Simultaneous Measurement of Ca2+ and Cellular Dynamics: Combined Scanning Ion Conductance and Optical Microscopy to Study Contracting Cardiac Myocytes. Biophysical journal 81:1759–1764

    CAS  Google Scholar 

  17. Pastré D, Iwamoto H, Liu J, Szabo G, Shao Z (2001) Characterization of AC mode scanning ion-conductance microscopy. Ultramicroscopy 90:13–19

    Article  Google Scholar 

  18. Hille B (1992) Ionic Channels of Excitable Membranes, 2nd ed. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  19. Sakmann B, Neher E (1995) Single-Channel Recording, 2nd ed. Springer, Heidelberg

    Google Scholar 

  20. Prater CB, Hansma PK (1991) Improved scanning ion-conductance microscope using microfabricated probes. Rev Sci Instrum 62:2634–2638

    Article  CAS  Google Scholar 

  21. Mannelquist A, Iwamoto H, Szabo G, Shao Z (2001) Near-field optical microscopy with a vibrating probe in aqueous solution. Appl Phys Lett 78:2076–2078

    Article  CAS  Google Scholar 

  22. Bard AJ, Denuault G, Lee C, Mandler D, Wipf DO (1990) Scanning electrochemical microscopy: a new technique for the characterization and modification of surfaces. Acc Chem Res 23:357–363

    Article  CAS  Google Scholar 

  23. Bockris JO, Reddy AKN (2000) Modern Electrochemistry: Electrodics in Chemistry, Engineering, Biology, and Environmental Science. Plenum Publishing Corporation, New York

    Google Scholar 

  24. QuickField SE. Tera Analysis Ltd., Svendborg, Denmark

    Google Scholar 

  25. Gehrtsen C, Kneser HO, Vogel H (1989) Physik, 16th ed. Springer, Berlin

    Google Scholar 

  26. Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, Vodyanoy I, Edwards CRW (2000) Cell Volume Measurement Using Scanning Ion Conductance Microscopy. Biophysical journal 78:451–457

    CAS  Google Scholar 

  27. Korchev YE, Negulyaev YA, Edwards CRW, Vodyanoy I, Lab MJ (2000) Functional localization of single active ion channels on the surface of a living cell. Nat Cell Biol 2:616–619

    Article  CAS  Google Scholar 

  28. Gitter AH, Bertog M, J-DS, Fromm M (1997) Measurement of paracellular epithelial conductivity by conductance scanning. Eur J Physiol 434:830–840

    Article  CAS  Google Scholar 

  29. Mann SA, Hoffmann G, Hengstenberg A, Schuhmann W, Dietzel ID (2002) Pulse-mode scanning ion conductance microscopy: A method to investigate cultured hippocampal cells. J Neurosci Methods 116:113–117

    Article  CAS  Google Scholar 

  30. Happel P, Hoffmann G, Mann SA, Dietzel ID (2003) Monitoring cell movements and volume changes with pulse-mode scanning ion conductance microscopy. J Microsc 212:144–151

    Article  CAS  Google Scholar 

  31. Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Mapping interaction forces with the atomic force microscope. Biophysical Journal 66:2159–2165

    CAS  Google Scholar 

  32. Gorelik J, Yuchun, G., Spohr HA, Shevchuk AI, Lab MJ, Harding SE, Edwards CRW, Whitaker M, Moss GWJ, Benton DCH, Sanchez D, Darszon A, Vodyanoy I, Klenerman D, Korchev YE (2002) Ion channels in small cells and subcellular structures can be studied with a smart patch-clamp system. Biophys J 83:3296–3303

    CAS  Google Scholar 

  33. Gorelik J, Shevchuk AI, Frolenkov GI, Diakonov IA, Lab MJ, Kros CJ, Richardson GP, Vodyanoy I, Edwards CRW, Klenerman D, Korchev YE (2003) Dynamic assembly of surface structures in living cells. Proc Natl Acad Sci USA 100:5819–5822

    Article  CAS  Google Scholar 

  34. Gorelik J, Zhang A, Shevchuk A, Frolenkov GI, Sanchez D, Lab MJ, Vodyanoy I, W ECR, Klenerman D, Korchev YE (2002) The use of scanning ion conductance microscopy to image A6 cells. Mol Cell Endocrinol 217:101–108

    Article  CAS  Google Scholar 

  35. Korchev YE, Raval M, Lab MJ, Gorelik J, Edwards CRW, Rayment T, Klenerman D (2000) Hybrid Scanning Ion Conductance and Scanning Near-Field Optical Microscopy for the Study of Living Cells. Biophys J 78:2675–2679

    Article  CAS  Google Scholar 

  36. Mannelquist A, Iwamoto H, Szabo G, Shao Z (2002) Near field optical microscopy in aqueous solution: implementation and characterization of a vibrating probe. J Microsc 205:53–60

    Article  CAS  Google Scholar 

  37. Bruckbauer A, Ying L, Rothery AM, Korchev YE, Klenerman D (2002) Characterization of a novel light source for simultaneous optical and scanning ion conductance microscopy. Analytical Chemistry 2002,74:2612–2616

    Article  CAS  Google Scholar 

  38. Rothery AM, Gorelik J, Bruckbauer A, Yu W, Korchev YE, Klenerman D (2003) A novel light source for SICM-SNOM of living cells. J Microsc 209:94–101

    Article  CAS  Google Scholar 

  39. Gorelik J, Shevchuk A, Ramalho M, Elliott M, Lei C, Higgins CF, Lab MJ, Klenerman D, Krauzewicz N, Korchev Y (2002) Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging — Application to single virus-like particle entry into a cell. Proc Natl Acad Sci USA 99:16018–16023

    Article  CAS  Google Scholar 

  40. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64:1738–1740

    Article  CAS  Google Scholar 

  41. Putman CAJ, Werf KOVd, Grooth BGD, Hulst NFV, Greve J (1994) Tapping mode atomic force microscopy in liquid. Appl Phys Lett 64:2454–2456

    Article  CAS  Google Scholar 

  42. Shalom S, Lieberman K, Lewis A, Cohen SR (1992) A Micropipette Force Probe Suitable For Near-Field Scanning Optical Microscopy. Rev Sci Instrum 63:4061–4065

    Article  CAS  Google Scholar 

  43. Lewis A, Taha H, Strinkovski A, Manevitch A, Khatchatouriants A, Dekhter R, Amman E (2003) Near-field optics: from subwavelength illumination to nanometric shadowing. Nat Biotechnol 21:1378–1386

    Article  CAS  Google Scholar 

  44. Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 5000:1468–1470

    Google Scholar 

  45. Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M(1992) Near-field differential scanning optical microscope with atomic force regulation. Appl Phys Lett 60:2957–2959

    Article  CAS  Google Scholar 

  46. Karraï K, Grober RD (1995) Piezoelectric tip-sample distance control for near field optical microscopes. Appl Phys Lett 14:1842–1844

    Article  Google Scholar 

  47. Rensen WHJ, van Hulst NF, Kämmer SB (2000) Imaging soft samples in liquid with tuning fork based shear force microscopy. Appl Phys Lett 77: 1557–1559

    Article  CAS  Google Scholar 

  48. Brunner R, Hering O, Marti O, Hollricher O (1997) Piezoelectrical shear-force control on soft biological samples in aqueous solution. Appl Phys Lett 71:3628–3630

    Article  CAS  Google Scholar 

  49. Koopman M, de Bakker BI, Garcia-Parajo MF, van Hulst NF (2003) Shear force imaging of soft samples in liquid using a diving bell concept. Appl Phys Lett 83:5083–5085

    Article  CAS  Google Scholar 

  50. Lambelet P, Pfeffer M, Sayah A, Marquis-Weible F (1998) Reduction of tip-sample interaction forces for scanning near-field optical microscopy in a liquid environment. Ultramicroscopy 71:117–121

    Article  CAS  Google Scholar 

  51. Fischer BE, Spohr R (1983) Production and use of nuclear tracks: imprinting structure on solids. Rev Mod Phys 55:907–948

    Article  CAS  Google Scholar 

  52. Powell DW (1981) Barrier function of epithelia. Am J Physiol 241: G275–G288

    CAS  Google Scholar 

  53. Simionescu M, Simionescu N (1986) Functions of the endothelial cell surface. Ann Rev Physiol 48:279–293

    Article  CAS  Google Scholar 

  54. Wegner J, Zink S, Rösen P, Galla H-J (1999) Use of electrochemical impedance measurements to monitor ß-adrenergic stimulation of bovine aortic endothelial cells. Eur J Physiol 437:925–934

    Article  Google Scholar 

  55. Wegner J, Abrams D, Willenbrink W, Galla H-J, Janshoff A (2004) Automated multi-well device to measure transepithelial electrical resistances under physiological conditions. Biotechniques 37:590–597

    Google Scholar 

  56. Zhang H, Wu L, Huang F (1999) Electrochemical microprocess by scanning ion-conductance microscopy. J Vac Sci Technol B 17:269

    Article  CAS  Google Scholar 

  57. Lewis A, Kheifetz Y, Shambrodt E, Radko A, Khatchatryan E, Sukenik C (1999) Fountain pen nanochemistry: Atomic force control of chrome etching. Appl Phys Lett 75:2689–2691

    Article  CAS  Google Scholar 

  58. Müller A-D, Müller F, Hietschold M (1998) Electrochemical pattern formation in a scanning near-field optical microscope. Appl Phys A 66:S453–S456

    Article  Google Scholar 

  59. Müller A-D, Müller F, Hietschold M (2000) Localized electrochemical deposition of metals using micropipettes. Thin Solid Films 366:32–36

    Article  Google Scholar 

  60. Hong M-H, Kim KH, Bae J, Jhe W (2000) Scanning nanolithography using a material-filled nanopipette. Appl Phys Lett 77:2604–2606

    Article  CAS  Google Scholar 

  61. Larson BJ, Gillmor SD, Lagally MG (2003) Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette. Rev Sci Instrum 75:832–836

    Article  CAS  Google Scholar 

  62. Ying L, Bruckbauer A, Rothery AM, Korchev YE, Klenerman D (2002) Programmable Delivery of DNA through a Nanopipet. Anal Chem 74:1380–1385

    Article  CAS  Google Scholar 

  63. Bruckbauer A, Ying L, Rothery AM, Zhou D, Shevchuk AI, Abell C, Korchev YE, Klenerman D (2002) Writing with DNA and protein using a nanopipet for controlled delivery. J Am Chem Soc 124:8810–8811

    Article  CAS  Google Scholar 

  64. Bruckbauer A, Zhou D, Ying L, Korchev YE, Abell C, Klenerman D (2003) Multicomponent Submicron Features of Biomolecules Created by Voltage Controlled Deposition from a Nanopipet. J Am Chem Soc 125:9834–9839

    Article  CAS  Google Scholar 

  65. Taha H, Marks RS, Gheber LA, Rousso I, Newman J, Sukenik C, Lewis A (2003) Protein printing with an atomic force sensing nanofountainpen. Appl Phys Lett 83:1041–1043

    Article  CAS  Google Scholar 

  66. Seebach J (2001) Einsatz elektrisch leitender Kultursubstrate zur Charakterisierung von Zell-Zell-und Zell-Substrat-Interaktionen, Dissertation thesis, University of Münster

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schäffer, T.E., Anczykowski, B., Fuchs, H. (2006). Scanning Ion Conductance Microscopy. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods II. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27453-7_3

Download citation

Publish with us

Policies and ethics