Skip to main content

HSV-Induced Apoptosis in Herpes Encephalitis

  • Chapter
Book cover Role of Apoptosis in Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 289))

Abstract

HSV triggers and blocks apoptosis in cell type-specific fashion. This review discusses present understanding of the role of apoptosis and signaling cascades in neuronal pathogenesis and survival and summarizes present findings relating to the modulation of these strictly balanced processes by HSV infection. Underscored are the findings that HSV-1, but not HSV-2, triggers apoptosis in CNS neurons and causes encephalitis in adult subjects. Mechanisms responsible for the different outcomes of infection with the two HSV serotypes are described, including the contribution of viral antiapoptotic genes, notably the HSV-2 gene ICP10PK. Implications for the potential use of HSV vectors in future therapeutic developments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acarin L, Gonzalez B, Castellano B (2000) Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci 12:3505–3520

    Article  PubMed  Google Scholar 

  • Adams JP, Sweatt JD (2002) Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol 42:135–163

    Article  PubMed  Google Scholar 

  • Ahmed M, Lock M, Miller CG, Fraser NW (2002) Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol 76:717–729

    Article  PubMed  Google Scholar 

  • Antonavich FJ, Federoff HJ, Davis JN (1999) Bcl-2 transduction, using a herpes simplex virus amplicon, protects hippocampal neurons from transient global ischemia. Exp Neurol 156:130–137

    Article  PubMed  Google Scholar 

  • Arai K, Lee SR, van Leyen K, Kurose H, Lo EH (2004) Involvement of ERK MAP kinase in endoplasmic reticulum stress in SH-SY5Y human neuroblastoma cells. J Neurochem 89:232–239

    PubMed  Google Scholar 

  • Arribas JR, Storch GA, Clifford DB, Tselis AC (1996) Cytomegalovirus encephalitis. Ann Intern Med 125:577–587

    PubMed  Google Scholar 

  • Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668

    Article  PubMed  Google Scholar 

  • Asano S, Honda T, Goshima F, Watanabe D, Miyake Y, Sugiura Y, Nishiyama Y (1999) US3 protein kinase of herpes simplex virus type 2 plays a role in protecting corneal epithelial cells from apoptosis in infected mice. J Gen Virol 80:51–56

    PubMed  Google Scholar 

  • Atwal JK, Massie B, Miller FD, Kaplan DR (2000) The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27:265–277

    Article  PubMed  Google Scholar 

  • Aubert M, Blaho JA (2001) Modulation of apoptosis during herpes simplex virus infection in human cells. Microbes Infect 3:859–866

    Article  PubMed  Google Scholar 

  • Aurelian L (1998) Herpes simplex virus type 2: unique biological properties include neoplastic potential mediated by the PK domain of the large subunit of ribonucleotide reductase. Front Biosci 3:d237–d249

    PubMed  Google Scholar 

  • Aurelian L, Smith CC (2000) Herpes simplex virus type 2 growth and latency reactivation by co-cultivation are inhibited with antisense oligonucleotides comple-mentary to the translation initiation site of the large subunit of ribonucleotide reductase (RR1). Antisense Nucleic Acid Drug Dev 10:77–85

    PubMed  Google Scholar 

  • Bale T.L, Picetti R, Contarino A, Koob GF, Vale WW, Lee KF (2002) Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J Neurosci 22:193–199

    PubMed  Google Scholar 

  • Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, Lysko PG, Feuerstein GZ (1997) Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke 28:1233–1244

    PubMed  Google Scholar 

  • Beere HM (2001) Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 93:1–6

    Google Scholar 

  • Benetti L, Munger J, Roizman B (2003) The herpes simplex virus 1 US3 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J Virol 77:6567–6573

    Article  PubMed  Google Scholar 

  • Ben-Hur T, Cialic R, Weidenfeld J (2003) Virus and host factors that mediate the clinical and behavioral signs of experimental herpetic encephalitis. A short autoreview. Acta Microbiol Immunol Hung 50:443–451

    Article  PubMed  Google Scholar 

  • Bhakar AL, Howell JL, Paul CE, Salehi AH, Becker EB, Said F, Bonni A, Barker PA (2003) Apoptosis induced by p75NTR overexpression requires Jun kinase-dependent phosphorylation of Bad. J Neurosci 23:11378–11381

    Google Scholar 

  • Bolovan CA, Sawtell NM, Thompson R L (1994). ICP34.5 mutants of herpes simplex virus type 1 strain 17syn+ are attenuated for neurovirulence in mice and for replication in confluent primary mouse embryo cell cultures. J Virol 68:48–55

    PubMed  Google Scholar 

  • Bouschet T, Perez V, Fernandez C, Bockaert J, Eychene A, Journot L (2003) Stimulation of the ERK pathway by GTP-loaded Rapl requires the concomitant activation of Ras, protein kinase C, and protein kinase A in neuronal cells. J Biol Chem 278:4778–4785

    Article  PubMed  Google Scholar 

  • Buss K, Drewke C, Lohmann S, Piwonska A, Leistner E (2001) Properties and interaction of heterologously expressed glutamate decarboxylase isoenzymes GAD(65 kDa) and GAD(67 kDa) from human brain with ginkgotoxin and its 5′-phosphate. J Med Chem 44:3166–3174

    Article  PubMed  Google Scholar 

  • Cartier A, Komai T, Masucci MG (2003) The Us3 protein kinase of herpes simplex virus 1 blocks apoptosis and induces phosphorylation of the Bcl-2 family member Bad. Exp Cell Res 291:242–250

    Article  PubMed  Google Scholar 

  • Castro-Obregon S, Rao RV, del Rio G, Chen SF, Poksay KS, Rabizadeh S, Vesce S, Zhang XK, Swanson RA, Bredesen DE (2004) Alternative, nonapoptotic programmed cell death: mediation by arrestin 2, ERK2, and Nur77. J Biol Chem 279:17543–17553

    Article  PubMed  Google Scholar 

  • Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

    Article  PubMed  Google Scholar 

  • Chi S, Kitanaka C, Noguchi K, Mochizuki T, Nagashima Y, Shirouzu M, Fujita H, Yoshida M, Chen W, Asai A, Himeno M, Yokoyama S, Kuchino Y (1999) Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene 18:2281–2290

    Article  PubMed  Google Scholar 

  • Chittenden T (1998) Mammalian Bcl-2 family genes. In Wilson J.W., Booth C., Potten C.S., eds., Apoptosis genes, Kluwer Acad. Publishers pp 37–83

    Google Scholar 

  • Chong H, Vikis HG, Guan KL (2003) Mechanisms of regulating the Raf kinase family. Cell Signal 15:463–469

    Article  PubMed  Google Scholar 

  • Coen DM (2002) Neither LAT nor open reading frame P mutations increase expression of spliced or intron-containing ICPO transcripts in mouse ganglia latently infected with herpes simplex virus. J Virol 76:4764–4772

    Article  PubMed  Google Scholar 

  • Colgin MA, Smith RL, Wilcox CL (2001) Inducible cyclic AMP early repressor produces reactivation of latent Herpes simplex virus type 1 in neurons in vitro. J Virol 75:2912–2920

    Article  PubMed  Google Scholar 

  • Colucci-D’Amato L, Perrone-Capano C, di Porzio U (2003) Chronic activation of ERK and neurodegenerative diseases. Bioessays 25:1085–1095

    Article  PubMed  Google Scholar 

  • Craig CP, Nahmias AJ (1973) Different patterns of neurologic involvement with herpes simplex virus types 1 and 2: isolation of herpes simplex virus type 2 from the buffy coat of two adults with meningitis. J Infect Dis 127:365–372

    PubMed  Google Scholar 

  • Cribbs DH, Azizeh BY, Cotman CW, LaFerla FM (2000) Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homology to the Alzheimer’s Aβ peptide. Biochemistry 39:5988–5994

    Article  PubMed  Google Scholar 

  • Dhandapani KM, Brann DW (2003) Transforming growth factor-beta: a neuroprotective factor in cerebral ischemia. Cell Biochem Biophys 39:13–22

    Article  PubMed  Google Scholar 

  • Dobson CB, Wozniak MA, Itzhaki RF (2003) Do infectious agents play a role in dementia? Trends Microbiol 11:312–317

    Article  PubMed  Google Scholar 

  • Domachowske JB, Cunningham CK, Cummings DL, Crosley CJ, Hannan WP, Weiner LB (1996) Acute manifestations and neurologic sequelae of Epstein-Barr virus encephalitis in children. Pediatr Infect Dis J 15:871–875

    Article  PubMed  Google Scholar 

  • Dumas T, McLaughlin J, Ho D, Meier T, Sapolsky R (1999) Delivery of herpes simplex virus amplicon-based vectors to the dentate gyrus does not alter hippocampal synaptic transmission in vivo. Gene Ther 6:1679–1684

    Article  PubMed  Google Scholar 

  • Eilers A, Whitfield J, Shah B, Spadoni C, Desmond H, Ham J (2001) Direct inhibition of c-Jun N-terminal kinase in sympathetic neurons prevents c-jun promoter activation and NGF withdrawal-induced death. J. Neurochem 76:1439–1454

    Article  PubMed  Google Scholar 

  • English JD, Sweatt JD (1996) Activation of p42 Mitogen activated protein kinase in hippocampal long term potentiation. J Biol Chem 271:24329–24332

    Article  PubMed  Google Scholar 

  • Esiri MM (1982) Herpes simplex encephalitis. J Neurol Sci 54:209–226

    Article  PubMed  Google Scholar 

  • Fisman DN, Lipsitch M, Hook EW 3rd, Goldie SJ (2002) Projection of the future dimensions and costs of the genital herpes simplex type 2 epidemic in the United States. Sex Transm Dis 29:608–622

    PubMed  Google Scholar 

  • Freeman SM, Whartenby KA, Freeman JL, Abboud CN, Marrogi AJ (1996) In situ use of suicide genes for cancer therapy. Semin Oncol 23:31–45

    Google Scholar 

  • Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    Article  PubMed  Google Scholar 

  • Giraud S, Diaz-Latoud C, Hacot S, Textoris J, Bourette RP, Diaz JJ (2004) US11 of herpes simplex virus type 1 interacts with HIPK2 and antagonizes HIPK2-in-duced cell growth arrest. J Virol 78:2984–2993

    Article  PubMed  Google Scholar 

  • Gober M, Smith CC, Ueda K, Toretsky J, Aurelian L (2003) Forced expression of the H11 heat shock protein can be regulated by DNA methylation and trigger apoptosis in human cells. J Biol Chem 278:37600–37609

    Article  PubMed  Google Scholar 

  • Golembewski EK, Wales SQ, Aurelian L, Yarowsky PI (2003) ICP10 PK as a therapy for acute excitotoxic injury in vivo and its mechanism of anti-apoptotic activity. Program No. 741.10 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience

    Google Scholar 

  • Goodkin ML, Ting AT, Blaho JA (2003) NF-kappaB is required for apoptosis prevention during herpes simplex virus type 1 infection. J Virol 77:7261–7280

    Article  PubMed  Google Scholar 

  • Guegan C, Vila M, Teismann P, Chen C, Onteniente B, Li M, Friedlander RM, Przed-borski S, Teissman P (2002) Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS. Mol Cell Neurosci 20:553–562

    Article  PubMed  Google Scholar 

  • Hagglund R, Munger J, Poon AP, Roizman B (2002) U(S)3 protein kinase of herpes simplex virus blocks caspase 3 activation induced by the products of U(S)1.5 and U(L)13 genes and modulates expression of transduced U(S)1.5 open reading frame in a cell type-specific manner. J Virol 76:743–754

    Article  PubMed  Google Scholar 

  • Hill J, Patel A, Bhattacharjee P, Krause P (2003) An HSV-1 chimeric containing HSV-2 latency associated transcript (LAT) sequences has significantly reduced adrenergic reactivation in the rabbit eye model. Curr Eye Res 26:219–224

    Article  PubMed  Google Scholar 

  • Hill MM, Adrain C, Martin SJ (2003) Portrait of a killer: the mitochondrial apopto-some emerges from the shadows. Mol Interv 3:19–26

    Article  PubMed  Google Scholar 

  • Hood C, Cunningham AL, Slobedman B, Boadle RA, Abendroth A (2003) Varicella-zoster virus-infected sensory neurons are resistant to apoptosis, yet human fore-skin fibroblasts are susceptible: evidence for a cell-type-specific apoptotic response. J Virol 77:12852–12864

    Article  PubMed  Google Scholar 

  • Huang Q, Vonsattel JP, Schaffer PA, Martuza RL, Breakfield XO, DiFiglia M (1992) Introduction of a foreign gene (Escherichia coli lacZ) into rat neostriatal neurons using herpes simplex virus mutants: a light and electron microscopy study. Exp Neurol 115:303–316

    Article  PubMed  Google Scholar 

  • Hunsperger EA, Wilcox CL (2003) Caspase-3-dependent reactivation of latent herpes simplex virus type 1 in sensory neuronal cultures. J Neurovirol 9:390–398

    PubMed  Google Scholar 

  • Im SA, Gomez-Manzano C, Fueyo J, Liu TJ, Ke LD, Kim JS, Lee HY, Steck PA, Kyritsis AP, Yu WK (1999) Antiangiogenesis treatment for gliomas: transfer of antisense-vascular endothelial growth factor inhibits tumor growth in vivo. Cancer Res 59:895–900

    PubMed  Google Scholar 

  • Jerome KR, Fox R, Chen Z, Sears AE, Lee H, Corey L (1999) Herpes simplex virus inhibits apoptosis through the action of two genes, US5 and US3. J Virol 73:8950–8957

    PubMed  Google Scholar 

  • Jin L, Peng W, Perng GC, Brick DJ, Nesburn AB, Jones C, Wechsler SL (2003) Identification of herpes simplex virus type 1 latency-associated transcript sequences that both inhibit apoptosis and enhance the spontaneous reactivation phenotype. J Virol 77:6556–6561

    Article  PubMed  Google Scholar 

  • Johnson Webb S, Harrison DJ, Wyllie AH (1997) Apoptosis: an overview of the process and its relevance in disease. Adv Pharmacol 41:1–31

    PubMed  Google Scholar 

  • Jones C (2003) Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clin Microbiol Rev 16:79–95

    Article  PubMed  Google Scholar 

  • Jones CA, Fernandez M, Herc K, Bosnjak L, Miranda-Saksena M, Boadle RA, Cunningham A (2003) Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro. J Virol 77:11139–11149

    Article  PubMed  Google Scholar 

  • Kandel ES, Hay N (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp. Cell Res 253:210–229

    Article  PubMed  Google Scholar 

  • Kang Si, Sanchez I, Jing N, Yuan J (2003) Dissociation between neurodegeneration and caspase-11-mediated activation of caspase-1 and caspase-3 in a mouse model of amyotrophic lateral sclerosis. J Neurosci 23:5455–5460

    PubMed  Google Scholar 

  • Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

    Article  PubMed  Google Scholar 

  • Kelleher RJ 3rd, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116:467–479

    Article  PubMed  Google Scholar 

  • Kong H, Baerbig Q, Duncan L, Shepel N, Mayne M (2003) Human herpesvirus type 6 indirectly enhances oligodendrocyte cell death. J Neurovirol 9:539–550

    PubMed  Google Scholar 

  • Koyama AH, Adachi A (1997) Induction of apoptosis by herpes simplex virus type 1. J Gen Virol 78:2909–2912

    PubMed  Google Scholar 

  • Kristie TM, Pomerantz JL, Twomey TC, Parent SA, Sharp PA (1995) The cellular C1 factor of the herpes simplex virus enhancer complex is a family of polypeptides. J Biol Chem 270:4387–4394

    Article  PubMed  Google Scholar 

  • Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW (2004) Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA 101:1315–1320

    Article  Google Scholar 

  • Lambeng N, Willaime-Morawek S, Mariani J, Ruberg M, Brugg B (2003) Activation of mitogen-activated protein kinase pathways during the death of PC12 cells is dependent on the state of differentiation. Brain Res Mol Brain Res 111:52–60

    Article  PubMed  Google Scholar 

  • Latchman DS (2004) Protective effect of heat shock proteins in the nervous system. Curr Neurovasc Res 1:21–27

    Article  Google Scholar 

  • Leib DA, Bogard CL, Kosz-Vnenchak M, Hicks KA, Coen DM, Knipe DM, Schaffer PA (1989) A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol 63:2893–2900

    PubMed  Google Scholar 

  • Leopardi R, Roizman B (1996) The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc Natl Acad Sci USA 93:9583–9587

    Article  PubMed  Google Scholar 

  • Lokensgard JR, Hu S, Sheng W, vanOijen M, Cox D, Cheeran MC, Peterson PK (2001) Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol 7:208–219

    Article  PubMed  Google Scholar 

  • Lowes VL, Ip NY, Wong YH (2002) Integration of signals from receptor tyrosine kinases and G protein-coupled receptors. Neurosignals 11:5–19

    Article  PubMed  Google Scholar 

  • Marques AR, Straus SE (2001) Lack of association between HSV-1 DNA in the brain, Alzheimer disease and apolipoprotein E4. J Neurovirol 7:82–83

    Article  PubMed  Google Scholar 

  • McLaughlin J, Roozendaal B, Dumas T, Gupta A, Ajilore O, Hsieh J, Ho D, Lawrence M, McGaugh JL, Sapolsky R (2000) Sparing of neuronal function post-seizure with gene therapy. Proc Natl Acad Sci USA 97:12804–12809

    Article  PubMed  Google Scholar 

  • Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1:938–943

    Article  PubMed  Google Scholar 

  • Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287–34294

    Article  PubMed  Google Scholar 

  • Moriuchi S, Oligino T, Krisky D, Marconi P, Fink D, Cohen J, Glorioso JC (1998) Enhanced tumor cell killing in the presence of ganciclovir by herpes simplex virus type 1 vector-directed co-expression of human tumor necrosis factor-alpha and herpes simplex virus thymidine kinase. Cancer Res 58:5731–5737

    PubMed  Google Scholar 

  • Myers MP, Murphy MB, Landreth G (1994) The dual-specificity CLK kinase induces neuronal differentiation of PC12 cells. Mol Cell Biol 14:6954–6961

    PubMed  Google Scholar 

  • Nebreda AR, Gavin A-C (1999) Cell survival demands some Rsk. Science 286:1309–1310

    Article  PubMed  Google Scholar 

  • Nelson J, Zhu J, Smith CC, Kulka M, Aurelian L (1996) ATP and SH3 binding sites in the protein kinase of the large of herpes simplex virus ribonucleotide reductase (ICP10). J Biol Chem 271:17021–17027

    Article  PubMed  Google Scholar 

  • Ogg PD, McDonell PJ, Ryckman BJ, Knudson CM, Roller RJ (2004) The HSV-1 Us3 protein kinase is sufficient to block apoptosis induced by overexpression of a variety of Bcl-2 family members. Virology 319:212–224

    Article  PubMed  Google Scholar 

  • Ozaki N, Sugiura Y, Yamamoto M, Yokoya S, Wanaka A, Nishiyama Y (1997). Apoptosis induced in the spinal cord and dorsal root ganglion by infection of herpes simplex virus type 2 in the mouse. Neurosci Lett 228:99–102

    Article  PubMed  Google Scholar 

  • Pankratov YV, Lalo UV, Krishtal OA (2002) Role for P2X receptors in long-term potentiation. J Neurosci 22:8363–8369

    PubMed  Google Scholar 

  • Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM (2000) Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 97:2208–2213

    Article  PubMed  Google Scholar 

  • Pasinelli P, Houseweart MK, Brown RH Jr, Cleveland DW (2000) Caspase-1 and-3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismu-tase-mediated familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 97:13901–13906

    Article  PubMed  Google Scholar 

  • Pelosi E, Rozenberg F, Coen DM, Tyler KL (1998) A herpes simplex virus DNA poly-merase mutation that specifically attenuates neurovirulence in mice. Virology 252:364–372

    Article  PubMed  Google Scholar 

  • Perkins D, Pereira EFR, Gober M, Yarowsky PJ, Aurelian L (2002a) The herpes simplex virus type 2 R1 PK (ICP10ΔPK) blocks apoptosis in hippocampal neurons involving activation of the MEK/MAPK survival pathway. J Virol 76:1435–1449

    PubMed  Google Scholar 

  • Perkins D, Yu YX, Bambrick LL, Yarwosky PJ, Aurelian L (2002b) Expression of herpes simplex virus type 2 protein ICP10 PK rescues neurons from apoptosis due to serum deprivation or genetic defects. Exp Neurol 174:118–122

    Article  PubMed  Google Scholar 

  • Perkins D, Pereira EFR, Aurelian L (2003a). The HSV-2 R1 PK (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons by activating the ERK survival pathway and upregulating the anti-apoptotic protein Bag-1. J Virol 77:1292–1305

    Article  PubMed  Google Scholar 

  • Perkins D, Gyure KA, Pereira EFR, Aurelian L (2003b) Herpes simplex virus type 1 induced encephalitis has an apoptotic component associated with activation of c-Jun N-terminal kinase. J. Neurovirol 9:101–111

    PubMed  Google Scholar 

  • Perng G-C, Maguen B, Jin L, Mott KR, Osorio N, Slanina SM, Yukht A, Ghiasi H, Nesburn AB, Inman M, Henderson G, Jones C, Wechsler SL (2002) A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 la-tency-associated transcript gene and restore wild-type reactivation levels. J Virol 76:1224–1235

    Article  PubMed  Google Scholar 

  • Plesnila N, Zhu C, Culmsee C, Groger M, Moskowitz MA, Blomgren K (2004) Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 24:458–466

    Article  PubMed  Google Scholar 

  • Rohn TT, Cusack SM, Kessinger SR, Oxford JT (2004) Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. Exp Cell Res 295:215–225

    Article  PubMed  Google Scholar 

  • Roulston A, Reinhard C, Amiri P, Williams LT (1998) Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha. J Biol Chem 273:10232–10239

    Article  PubMed  Google Scholar 

  • Sanfilippo CM, Chirimuuta FN, Blaho JA (2004) Herpes simplex virus type 1 imme-diate-early gene expression is required for the induction of apoptosis in human epithelial HEp-2 cells. J Virol 78:224–239

    Article  PubMed  Google Scholar 

  • Sauerbrei A, Eichhorn U, Hottenrott G, Wutzler P (2000). Virological diagnosis of herpes simplex encephalitis. J Clin Virol 17:31–36

    Article  PubMed  Google Scholar 

  • Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A, Weber MJ (1998) MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281:1668–1671

    Article  PubMed  Google Scholar 

  • Scherbel U, Raghupathi R, Nakamura M, Saatman KE, Trojanowski JQ, Neugebauer E, Marino MW, McIntosh TK (1999) Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci USA 96:8721–8726

    Article  PubMed  Google Scholar 

  • Schulz JB, Bremen D, Reed JC, Lommatzsch J, Takayama S, Wullner U, Loschmann P-A, Klockgether T, Weller M (1997) Cooperative interception of neuronal apoptosis by Bcl-2 and Bag-1 expression: prevention of caspase activation and reduced production of reactive oxygen species. J Neurochem 69:2075–2086

    PubMed  Google Scholar 

  • Shaw MM, Gurr WK, Thackray AM, Watts PA, Littler E, Field HJ (2002) Temporal pattern of herpes simplex virus type 1 infection and cell death in the mouse brain stem: influence of guanosine nucleoside analogues. J Virol Methods 102:93–102

    Article  PubMed  Google Scholar 

  • Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298:776–780

    Article  PubMed  Google Scholar 

  • Smith CC, Aurelian L (1997) The large subunit of herpes simplex virus type 2 ribo-nucleotide reductase (ICP10) is associated with the virion tegument and has PK activity. Virology 234:235–242

    Article  PubMed  Google Scholar 

  • Smith CC, Peng T, Kulka M, Aurelian L (1998) The PK domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) is required for immediate early gene expression and virus growth. J Virol 72:9131–9141

    PubMed  Google Scholar 

  • Smith CC, Nelson J, Aurelian L, Gober M, Goswami BB (2000a) Ras-GAP binding/phosphorylation by HSV-2 RR1PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. J Virol 74:10417–10429

    Article  PubMed  Google Scholar 

  • Smith CC, Yu YX, Kulka M, Aurelian L (2000b) A novel human gene similar to the PK coding domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine-threonine PK and is expressed in melanoma cells. J Biol Chem 275:25690–25699

    Article  PubMed  Google Scholar 

  • Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24:1–7

    Article  PubMed  Google Scholar 

  • Suzuki H, Imai F, Kanno T, Sawada M (2001) Preservation of neurotrophin expression in microglia that migrate into the gerbil’s brain across the blood-brain barrier. Neurosci Lett 312:95–98

    Article  PubMed  Google Scholar 

  • Taddeo B, Luo TR, Zhang W, Roizman B (2003) Activation of NF-kappaB in cells productively infected with HSV-1 depends on activated protein kinase R and plays no apparent role in blocking apoptosis. Proc Natl Acad Sci USA 100:12408–12413

    Article  PubMed  Google Scholar 

  • Tan S-L, Katze MG (2000) HSV.com: maneuvering the internetworks of viral neuro-pathogenesis and evasion of the host defense. Proc Natl Acad Sci USA 97:5684–5686

    Article  PubMed  Google Scholar 

  • Thomas SK, Lilley CE, Latchman DS, Coffin RS (2002) A protein encoded by the herpes simplex virus (HSV) type 1 2-kilobase latency-associated transcript is phosphorylated, localized to the nucleus, and overcomes the repression of expression from exogenous promoters when inserted into the quiescent HSV genome. J Virol 76:4056–4067

    Article  PubMed  Google Scholar 

  • Thompson RL, Sawtell NM (1997) The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 71:5432–5440

    PubMed  Google Scholar 

  • Thompson RL, Sawtell NM (2000) HSV latency-associated transcript and neuronal apoptosis. Science 289:1651

    Article  PubMed  Google Scholar 

  • Tomac A, Lindqvist E, Lin LFH, Ogre SO, Young D, Hoffer BJ, Olson L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339

    Article  PubMed  Google Scholar 

  • Tomlinson AH, Esiri MM (1983) Herpes simplex encephalitis. J Neurol Sci 60:473–484

    Article  PubMed  Google Scholar 

  • Trousdale MD, Steiner I, Spivack JG, Deshmane SL, Brown SM, MacLean AR, Subak-Sharpe JH, Fraser NW (1991) In vivo and in vitro reactivation impairment of a herpes simplex virus type 1 latency-associated transcript variant in a rabbit eye model. J Virol 65:6989–6993

    PubMed  Google Scholar 

  • Vaudry D, Stork PJ, Lazarovici P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296:1648–1649

    Article  PubMed  Google Scholar 

  • Wachsman M, Kulka M, Smith CC, Aurelian L (2001) A growth and latency defective herpes simplex virus type 2 mutant (ICP10APK) has prophylactic and therapeutic protective activity in guinea pigs. Vaccine 19:1879–1890

    Article  PubMed  Google Scholar 

  • Waetzig V, Herdegen T (2003) A single c-Jun N-terminal kinase isoform (JNK3-p54) is an effector in both neuronal differentiation and cell death. J Biol Chem 278:567–572

    Article  PubMed  Google Scholar 

  • Wang K, Pesnicak L, Guancial E, Krause PR, Straus SE (2001) The 2.2-kilobase latency-associated transcript of herpes simplex virus type 2 does not modulate viral replication, reactivation, or establishment of latency in transgenic mice. J Virol 75:8166–8172

    Article  PubMed  Google Scholar 

  • Yamauchi Y, Daikoku T, Goshima F, Nishiyama Y (2003) Herpes simplex virus UL14 protein blocks apoptosis. Microbiol Immunol 47:685–689

    PubMed  Google Scholar 

  • York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJ (2000) Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rapl. Mol Cell Biol 20:8069–8083

    Article  PubMed  Google Scholar 

  • Zhou G, Roizman B (2000) Wild-type herpes simplex virus 1 blocks programmed cell death and release of cytochrome c but not the translocation of mitochondrial apoptosis-inducing factor to the nuclei of human embryonic lung fibroblasts. J Virol 74:9048–9053

    Article  PubMed  Google Scholar 

  • Zhu J, Aurelian L (1997) AP-1 cis-response elements are involved in basal expression and Vmw 10 transactivation of the large subunit of herpes simplex virus types 2 ribonucleotide reductase (ICP10). Virology 231:301–312

    Article  PubMed  Google Scholar 

  • Zwartkruis FJ, Bos JL (1999) Ras and Rapl: two highly related small GTPases with distinct function. Exp Cell Res 253:157–165

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Aurelian, L. (2005). HSV-Induced Apoptosis in Herpes Encephalitis. In: Griffin, D.E. (eds) Role of Apoptosis in Infection. Current Topics in Microbiology and Immunology, vol 289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27320-4_4

Download citation

Publish with us

Policies and ethics