Skip to main content

Ribozymes and siRNAs: From Structure to Preclinical Applications

  • Chapter
Book cover RNA Towards Medicine

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 173))

Abstract

The discovery that nucleic acids mediated the inhibition of gene expression in a sequence-specific manner has provided the scientific community with a potentially important tool to analyse gene function and validate drug targets. Selective inhibition of gene expression by ribozymes and small interfering RNAs (siRNAs) is being explored for potential therapeutics against viral infections, inflammatory disorders, haematological diseases and cancer. In order to be used as pharmaceutical drugs, chemical modifications are necessary to increase their stability in vivo. However, such modifications should not affect either the ribozyme cleavage activity or the incorporation of the siRNAs into the RNA interference (RNAi) targeting complex and subsequent mRNA cleavage. To attain stability, ribozymes and siRNAs must also overcome several other problems, including accessibility to target messenger RNAs (mRNAs), efficient delivery to target cells and unwanted non-specific effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R, Stanley ER, Abraham D (2004) Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 64:5378–5384

    Article  CAS  PubMed  Google Scholar 

  • Arico M, Biondi A, Pui CH (1997) Juvenile myelomonocytic leukemia. Blood 90:479–488

    CAS  PubMed  Google Scholar 

  • Avgeropoulos NG, Batchelor TT (1999) New treatment strategies for malignant gliomas. Oncologist 4:209–224

    CAS  PubMed  Google Scholar 

  • Bassi GS, Mollegaard NE, Murchie AI, Lilley DM (1999) RNA folding and misfolding of the hammerhead ribozyme. Biochemistry 38:3345–3354

    Article  CAS  PubMed  Google Scholar 

  • Beale G, Hollins AJ, Benboubetra M, Sohail M, Fox SP, Benter I, Akhtar S (2003) Gene silencing nucleic acids designed by scanning arrays: anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system. J Drug Target 11:449–456

    CAS  PubMed  Google Scholar 

  • Beigelman L, McSwiggen JA, Draper KG, Gonzalez C, Jensen K, Karpeisky AM, Modak AS, Matulic-Adamic J, DiRenzo AB, Haeberli P (1995) Chemical modification of hammerhead ribozymes. J Biol Chem 270:25702–25708

    CAS  PubMed  Google Scholar 

  • Bertrand E, Pictet R, Grange T (1994) Can hammerhead ribozymes be efficient tools to inactivate gene function? Nucleic Acids Res 22:293–300

    CAS  PubMed  Google Scholar 

  • Bode AM, Dong Z (2004) Targeting signal transduction pathways by chemopreventive agents. Mutat Res 555:33–51

    CAS  PubMed  Google Scholar 

  • Boyd MP, Ngok FK, Todd AV et al (2004) Critical steps in the implementation of haematopoietic progenitor-cell gene therapy using ribozyme vectors. In: Sioud M (ed) Methods in molecular biology, ribozymes and siRNA protocols, 2nd edn, vol. 252. Humana Press, New Jersey, pp 599–616

    Google Scholar 

  • Caponigro F, French RC, Kaye SB (1997) Protein kinase C: a worthwhile target for anticancer drugs? Anticancer Drugs 8:26–33

    CAS  PubMed  Google Scholar 

  • Carr KM, Rosenblatt K, Petricoin EF, Liotta LA (2004) Genomic and proteomic approaches for studying human cancer: prospects for true patient-tailored therapy. Annu Rev Genomics Hum Genet 1:134–140

    CAS  Google Scholar 

  • DeWever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447

    CAS  Google Scholar 

  • Dean N, McKay R, Miraglia L, Howard R, Cooper S, Giddings J, Nicklin P, Meister L, Ziel R, Geiger T, Muller M, Fabbro D (1996) Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-alpha expression. Cancer Res 56:3499–3507

    CAS  PubMed  Google Scholar 

  • Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nature 3:318–329

    CAS  Google Scholar 

  • Eister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  • Fedor MJ, Uhlenbeck OC (1990) Substrate sequence effects on “hammerhead” RNA catalytic efficiency. Proc Natl Acad Sci USA 87:1668–1672

    CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Flory CM, Pavco PA, Jarvis TC, Lesch ME, Wincott FE, Beigelman L, Hunt SW 3rd, Schrier DJ (1996) Nuclease-resistant ribozymes decrease stromelysin mRNA levels in rabbit synovium following exogenous delivery to the knee joint. Proc Natl Acad Sci USA 93:745–748

    Article  Google Scholar 

  • Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3:643–651

    Article  CAS  PubMed  Google Scholar 

  • Grunweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-Omethyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193

    Article  PubMed  Google Scholar 

  • Guschlbauer W, Jankowski K (1980) Nucleoside conformation is determined by the electronegativity of the sugar substituent. Nucleic Acids Res 8:1421–1433

    CAS  PubMed  Google Scholar 

  • Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378

    Article  CAS  PubMed  Google Scholar 

  • Haseloff J, Gerlach WL (1988) Simple RNA enzymes with new and highly specific endoribonuclease activity. Nature 334:585–591

    Article  CAS  PubMed  Google Scholar 

  • Heidenreich O, Benseler F, Fahrenholz A, Eckstein F (1994) High activity and stability of hammerhead ribozymes containing 2′-modified pyrimidine nucleosides and phosphoro-thioates. J Biol Chem 269:2131–2138

    CAS  PubMed  Google Scholar 

  • Hertel KJ, Pardi A, Uhlenbeck OC et al. (1992) Numbering system for the hammerhead. Nucleic Acids Res 20:3252

    CAS  PubMed  Google Scholar 

  • Iversen PO, Emanuel PD, Sioud M(2002) Targeting Raf-1 gene expression by aDNA enzyme inhibits juvenile myelomonocytic leukemia cell growth. Blood 99:4147–4153

    Article  CAS  PubMed  Google Scholar 

  • Kashani-Sabet M, Scanlon KJ (1995) Application of ribozymes to cancer therapy. Cancer Gene Ther 2:213–223

    CAS  PubMed  Google Scholar 

  • Kijima H, Bouffard DY, Scanlon KJ (1996) Ribozyme-mediated reversal of human pancreatic carcinoma phenotype. In: Ikehara S, Takaku F, Good RA (eds) Bone marrow transplantation-basic and clinical studies. Springer-Verlag, Tokyo, pp 153–163

    Google Scholar 

  • Koizumi M, Ohtsuka E (1991) Effects of phosphorothioate and 2′-amino goups in hammerhead ribozymes on cleavage rates and Mg2+ binding. Biochemistry 30:5145–5150

    Article  CAS  PubMed  Google Scholar 

  • Layzer JM, McCaffrey AP, Tanner A, Huang Z, Kay MA, Sullenger BA (2004) In vivo activity of nuclease-resistant siRNAs. RNA 10:766–771

    Article  CAS  PubMed  Google Scholar 

  • Leirdal M, Sioud M (1999) High cleavage activity and stability of hammerhead ribozymes with a uniform 2′-amino pyrimidine modification. Biochem Biophys Res Commun 250:171–174

    Google Scholar 

  • Leirdal M, Sioud M (2004) Gene-array analysis of glioma cells after treatment with an anti-PKCα siRNA. In: Sioud M (ed) Methods in molecular biology, ribozymes and siRNA protocols, 2nd edn, vol 252. Humana Press, Totowa, pp 493–500

    Google Scholar 

  • Lilley DMJ (2004) Analysis of global conformational transitions in ribozymes. In Sioud M (ed) Methods in molecular biology, ribozymes and siRNA protocols. 2nd edn, vol 252. Humana Press, Totowa, pp 77–108

    Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  • Menger M, Tuschl T, Eckstein F, Porschke D (1996) Mg2+-dependent conformational changes in the hammerhead ribozyme. Biochemistry 35:14710–14716

    Article  CAS  PubMed  Google Scholar 

  • Mueller MM, Fusenig NE (2004) Friends or foes-bipolar effects of the tumor stroma in cancer. Nat Rev Cancer 4:839–849

    Article  CAS  PubMed  Google Scholar 

  • Mueller MM, Herold-Mende CC, Riede D, Lange M, Steiner HH, Fusenig NE (1999) Autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor in human gliomas with tumor progression. Am J Pathol 155:1557–1567

    CAS  PubMed  Google Scholar 

  • Murray JB, Terwey DP, Maloney L, Karpeisky A, Usman N, Beigelman L, Scott W(1998) The structural basis of hammerhead ribozyme self-cleavage. Cell 92:665–673

    CAS  PubMed  Google Scholar 

  • Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsuno J, Baba S, Hedge P (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253:665–669

    CAS  PubMed  Google Scholar 

  • Olsen DB, Benseler F, Aurup H, Pieken WA, Eckstein F (1991) Study of a hammerhead ribozyme containing 2′-modified adenosine residues. Biochemistry 30:9735–9741

    Article  CAS  PubMed  Google Scholar 

  • Parekh DB, Ziegler W, Parker PJ (2000) Multiple pathways control protein kinase C phosphorylation. EMBO J 19:496–503

    Article  CAS  PubMed  Google Scholar 

  • Parry TJ, Cushman C, Gallegos AM, Agrawal AB, Richardson M, Andrews LE, Maloney L, Mokler VR, Wincott FE, Pavco PA (1999) Bioactivity of anti-angiogenic ribozymes targeting Flt-1 and KDR mRNA. Nucleic Acids Res 27:2569–2577

    Article  CAS  PubMed  Google Scholar 

  • Patzke S, Hauge H, Sioud M, Finne EF, Sivertsen EA, Delabie J, Stokke T, Aasheim HC (2004) Identification of a novel centrosome/microtubule-associated coiled-coil protein involved in cell-cycle progression and spindle organization. Oncogene 24:1159–1173

    Google Scholar 

  • Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F (1991) Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253:314–317

    CAS  PubMed  Google Scholar 

  • Pritchard C, McMahon M (1997) Raf revealed in life-or-death decisions. Nat Genet 16:214–215

    Article  CAS  PubMed  Google Scholar 

  • Pruitt K, Der CJ (2001) Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett 171:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501

    Article  CAS  PubMed  Google Scholar 

  • Raynolds A, Leake D, Boese Q et al. (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Google Scholar 

  • Rebollo A, Martinez CA (1999) Ras proteins: recent advances and new functions. Blood 94:2971–2980

    CAS  PubMed  Google Scholar 

  • Scott WG, Finch JT, Klug A (1995) The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81:991–1002

    CAS  PubMed  Google Scholar 

  • Sen GC (2001) Viruses and interferons. Annu Rev Microbiol 55:255–281

    Article  CAS  PubMed  Google Scholar 

  • Sioud M(1994) Interaction between tumor necrosis factor α ribozyme and cellular proteins. J Mol Biol 242:619–629

    Google Scholar 

  • Sioud M (1997) Effects of variations in length of hammerhead ribozyme antisense arms upon the cleavage of longer RNA substrates. Nucleic Acids Res 25:333–338

    Article  CAS  PubMed  Google Scholar 

  • Sioud M (2004) Therapeutic siRNAs. Trends Pharmacol Sci 25:22–28

    Article  CAS  PubMed  Google Scholar 

  • Sioud M, Jespersen L (1996) Enhancement of hammerhead ribozyme catalysis by glyceraldeyde-3-phosphate dehydrogenase. J Mol Biol 257:775–789

    Article  CAS  PubMed  Google Scholar 

  • Sioud M, Leirdal M(1999) Substitution of the 2′-hydroxyl group at position 2.1 by an amino group interferes with Mg2+ binding and efficient cleavage by hammerhead ribozyme. Biochem Biophys Res Commun 262:461–466

    Article  CAS  PubMed  Google Scholar 

  • Sioud M, Leirdal M (2000) Therapeutic RNA and DNA enzymes. Biochem Pharmacol 60:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Sioud M, Sørensen DR (1998) A nuclease-resistant protein kinase Cα ribozyme blocks glioma cell growth. Nat Biotechnol 16:556–561

    Article  CAS  PubMed  Google Scholar 

  • Sioud M, Sørensen DR (2003) Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 312:1220–1225

    Article  CAS  PubMed  Google Scholar 

  • Sioud M, (2004) Therapeutic potential of siRNAs. Drugs of the future 29:1–10

    Article  Google Scholar 

  • Sørensen DR, Leirdal M, Sioud M (2003) Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 327:761–766

    Article  PubMed  Google Scholar 

  • Sözeri O, Vollmer K, Liyanage M, Frith D, Kour G, Mark GE 3rd, Stabel S (1992) Activation of the c-Raf protein kinase by protein kinase C phosphorylation. Oncogene 7:2259–2262

    PubMed  Google Scholar 

  • Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  CAS  PubMed  Google Scholar 

  • Vickers TA, Koo S, Bennett CF, Crooke ST, Dean NM, Baker BF (2003) Efficient reduction of target RNAs by small interfering RNA and RNAse H-dependent antisense agents. A comparative analysis. J Biol Chem 278:7108–7118

    Article  CAS  PubMed  Google Scholar 

  • Ways DK, Kukoly CA, deVente J, Hooker JL, Bryant WO, Posekany KJ, Fletcher DJ, Cook PP, Parker PJ (1995) MCF-7 breast cancer cells transfected with protein kinase C-α exhibit altered expression of other protein kinase C isoforms and display a more aggressive neoplastic phenotype. J Clin Invest 95:1906–1915

    CAS  PubMed  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sioud, M. (2006). Ribozymes and siRNAs: From Structure to Preclinical Applications. In: Erdmann, V., Barciszewski, J., Brosius, J. (eds) RNA Towards Medicine. Handbook of Experimental Pharmacology, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27262-3_11

Download citation

Publish with us

Policies and ethics