Skip to main content

Determinants of Blood Flow and Organ Perfusion

  • Conference paper

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 42))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eckert R, Randall D, Burggren W, French K (2002) Circulation. In: Randall D, Burggren W French K (eds) Eckert Animal Physiology. Mechanisms and Adapations, 5th edn. WH Freeman & Co, New York, pp. 473–523

    Google Scholar 

  2. Foëx BA, Little RA (1999) Normal physiology. The cardiovascular system. In: Webb AR, Shapiro MJ, Singer M, Suter PM (eds) Oxford Textbook of Critical Care, Oxford University Press, Oxford, pp. 189–192

    Google Scholar 

  3. Schmidt-Nielsen K (1983) Circulation. In: Animal Physiology, 4th edition. Cambridge Universit Press, Cambridge UK, pp. 97–133

    Google Scholar 

  4. Edvinsson L, MacKenzie ET (1976) Amine mechanisms in the cerebral circulation. Pharmacol Rev 28:275–348

    PubMed  Google Scholar 

  5. Maddens M, Sowers J (1987) Catecholamines in critical care. Crit Care Clin 3:871–882

    PubMed  Google Scholar 

  6. Schetz M (2002) Vasopressors and the kidney. Blood Purif 20:243–251

    Article  PubMed  Google Scholar 

  7. Bellomo R, Giantomasso DD (2001) Noradrenaline and the kidney: friends or foes? Crit Care 5:294–298

    Article  PubMed  Google Scholar 

  8. Asfar P, De Backer D, Meier-Hellmann A, Radermacher P, Sakka S (2004) Influence of vasoactive and other therapies on intestinal and hepatic circulations in patients with septic shock. Crit Care 8:170–179

    Article  PubMed  Google Scholar 

  9. Peters J, Mack GW, Lister G (2001) The importance of the peripheral circulation in critical illness. Intensive Care Med 27:1446–1458

    Article  PubMed  Google Scholar 

  10. Guyton AC, Jones CE, Coleman TG (1955) Determinations of cardiac output by equating venous return curves with cardiac output curves. Physiol Rev 35:123–129

    PubMed  Google Scholar 

  11. Rothe CF (1993) Mean circulatory filling pressure: its meaning and measurement. J Appl Physiol 74:499–509

    PubMed  Google Scholar 

  12. Reilly PM, Wilkins KB, Fuh KC, Haglund U, Bulkley GB (2001) The mesenteric hemodynamic response to circulatory shock. Shock 15:329–343

    PubMed  Google Scholar 

  13. Haglund U (1999) The gastrointestinal system. Normal physiology. In: Webb AR, Shapiro MJ, Singer M, Suter PM (eds) Oxford Textbook of Critical Care, Oxford University Press, Oxford, pp. 297–299

    Google Scholar 

  14. Reichmann J, Brezies M (1999) Normal physiology. The renal system. In: Webb AR, Shapiro MJ, Singer M, Suter PM (eds) Oxford Textbook of Critical Care, Oxford University Press, Oxford, pp. 403–406

    Google Scholar 

  15. Bersten AD, Holt AW (1995) Vasoactive drugs and the importance of renal perfusion pressure. New Horiz 3:650–661

    PubMed  Google Scholar 

  16. Mallick A, Dearden NM (1999) Diagnosis of raised intracranial pressure. Raised intracranial pressure and cerebral edema. In: Webb AR, Shapiro MJ, Singer M, Suter PM (eds) Oxford Textbook of Critical Care, Oxford University Press, Oxford, pp. 457–459

    Google Scholar 

  17. Boyd WC, Hartman GS (1999) Neurologic dysfunction in cardiac surgery. New Horiz 7:504–513 466

    Google Scholar 

  18. Fernandes HM, Mendelow AD (1999) Assessment. Non-traumatic intracranial hemorrhage. In: Webb AR, Shapiro MJ, Singer M, Suter PM (eds) Oxford Textbook of Critical Care, Oxford University Press, Oxford, pp. 464–466

    Google Scholar 

  19. Beloucif S, Payen DM (1999) The hepatic system. Normal physiology. In: Webb AR, Shapiro MJ, Singer M, Suter PM (eds) Oxford Textbook of Critical Care, Oxford University Press, Oxford, pp. 300–302

    Google Scholar 

  20. Lautt WW (1985) Mechanism and role of intrinsic regulation of hepatic arterial bllod flow: hepatic arterial buffer response. Am J Physiol 249:G549–G556

    PubMed  Google Scholar 

  21. Jakob SM, Ruokonen E, Uusaro A, Parviainen I, Takala J (1999) Regional perfusion and gastrointestinal function after cardiac surgery. New Horiz 7:514–523

    Google Scholar 

  22. Pannen BH, Bauer M (1998) Differential regulation of hepatic arterial and portal venous vascular resistance by ntric oxide and carbon monoxide in rats. Life Sci 62:2025–2033

    Article  PubMed  Google Scholar 

  23. Jakob SM (2003) Splanchnic blood flowin low-flowstates. Anesth Analg 96:1129–1138

    Article  PubMed  Google Scholar 

  24. Bradley ES (1949) Variations in hepatic blood flow in man during health and disease. N Engl J Med 12:456–461

    Google Scholar 

  25. Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159

    PubMed  Google Scholar 

  26. Pinsky MR (2000) Breathing as an exercise the cardiovascular response to weaning from mechanical ventilation. Intensive Care Med 26:1164–1166

    Article  PubMed  Google Scholar 

  27. Bocquillon N, Mathieu D, Nevière D, Lefebvre N, Maréchal X, Wattel F (1999) Gastric mucosal pH and blood flow during weaning from mechanical ventilation in patients with obstructive pulmonary disease. Am J Respir Crit Care Med 160:1555–1561

    PubMed  Google Scholar 

  28. Mohsenifar Z, Hay A, Hay J, Lewis MI, Koerner SK (1993) Gastric intramural pH as a predictor of success or failure in weaning patients from mechanical ventilation. Ann Intern Med 119:794–798

    PubMed  Google Scholar 

  29. Edouard AR, Degremont AC, Duranteau J, Pussard E, Berdeaux A, Samii K (1994) Heterogenous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med 20:414–420

    Article  PubMed  Google Scholar 

  30. Riddez L, Hahn RG, Brismar B, Strandberg A, Svensén C, Hedenstierna G (1997) Central and regional hemodynamics during acute hypovolemia and volume substitution in volunteers. Crit Care Med 25:635–640

    Article  PubMed  Google Scholar 

  31. Tarnow J, Eberlein HJ, Hess W, Schneider E, Schweichel E, Zimmermann G (1979) Hemodynamic interactions of hemodilution, anaesthesia, propanolol pretreatment and hypovolemia I: systemic circulation. Basic Res Cardiol 74:109–122

    Article  PubMed  Google Scholar 

  32. Tarnow J, Eberlein HJ, Hess W, Schneider E, Schweichel E, Zimmermann G (1979) Hemodynamic interactions of hemodilution, anaesthesia, propanolol pretreatment and hypovolemia II: coronary circulation. Basic Res Cardiol 74:123–130

    Article  PubMed  Google Scholar 

  33. Habler O, Kleen M, Hutter J, et al (1997) Effects of hemodilution on splanchnic perfusion and hepatorenal function. II. Renal and hepatorenal function. Eur J Med Res 2:419–424

    PubMed  Google Scholar 

  34. Kleen M, Habler O, Hutter J, et al (1996) Effects of hemodilution on gastric perfusion and intramucosal pH. Am J Physiol 271:H1849–1855

    PubMed  Google Scholar 

  35. Kleen M, Habler O, Hutter J, et al (1997) Effects of hemodilution on splanchnic perfusion and hepatorenal function. I. Splanchnic perfusion. Eur J Med Res 2:413–418

    PubMed  Google Scholar 

  36. Autschbach R, Falk V, Lange H, et al (1996) Assessment of metabolic liver function and hepatic blood flow during cardiopulmonary bypass. Thorac Cardiovasc Surg 44:76–80

    PubMed  Google Scholar 

  37. Tu YK, Liu HM (1996) Effects of isovolemic hemodilution on hemodynamics, cerebral perfusion, and cerebral vascular reactivity. Stroke 27:441–445

    PubMed  Google Scholar 

  38. Ramamoorthy C, Rooney MW, Dries DJ, Mathru M (1992) Aggressive hydration during continuous positive-pressure ventilation restores atrial transmural pressure, plasma atrial natriuretic peptide concentrations, and renal function. Crit Care Med 20:1014–1019

    PubMed  Google Scholar 

  39. Vara-Thorbeck R, Guerrero Fernandez Maarcote JA (1987) Renal function in patients undergoing major surgery under moderate normovolemic hemodilution. Zentralbl Chir 112:1583–1587

    PubMed  Google Scholar 

  40. Welch M, Knight DG, Carr HM, Smyth JV, Walker MG (1993) The preservation of renal function by isovolemic hemodilution during aortic operations. J Vasc Surg 18:858–866

    Article  PubMed  Google Scholar 

  41. Buda AJ, Pinsky MR, Ingels NB, Daughters GT, Stinson EB, Alderman EL (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301:453–459

    PubMed  Google Scholar 

  42. Pinsky MR (1997) The hemodynamic consequences of mechanical ventilation: an evolving story. Intensive Care Med 23:493–503

    Article  PubMed  Google Scholar 

  43. Pinsky MR(2002) Recent advances in the clinical application of heart-lung interactions. Curr Opin Crit Care 8:26–31

    Google Scholar 

  44. Pinsky MR (1994) Cardiovascular effects of ventilatory supportand withdrawal. Anesth Analg 79:567–576

    PubMed  Google Scholar 

  45. Jellinek H, Krafft P, Fitzgerald RD, Schwarz S, Pinsky MR (2000) Right atrial pressure predicts hemdynamic response to apneic positive airway pressure. Crit Care Med 28:672–678

    Google Scholar 

  46. Cournand A, Motley HL, Werko L, Richards DW (1948) Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol 152:162–174

    Google Scholar 

  47. Dhainaut JF, Devaux JY, Monsallier JF, Brunet F, Villemant D, Huyghebaert MF (1986) Mechanisms of decreased left ventricular preload during continuous positive pressure ventilation in ARDS. Chest 90:74–80

    PubMed  Google Scholar 

  48. Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Laver MB (1975) Hemodynmic responses to mechanical ventilation with PEEP. The effect of hypervolemia. Anesthesiology 42:45–55

    PubMed  Google Scholar 

  49. Jardin F, Farcot JF, Boisante L, Curien N, Margairaz A, Bourdarias JP (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304:387–392

    PubMed  Google Scholar 

  50. Jardin F (2003) Ventricular interdependence: how does it impact on hemodynamic evaluation in clinical practice? Intensive Care Med 29:361–363

    Article  PubMed  Google Scholar 

  51. Pinsky MR, Desmet JM, Vincent JL (1992) Effect of positive end-expiratory pressure on right ventricular function in humans. Am Rev Respir Dis 146:681–687

    PubMed  Google Scholar 

  52. Jardin F, Bourdarias JP (1997) Right ventricular myocardial function in ARF patients: PEEP as a challenge for right heart. Intensive Care Med 23:237–239

    Article  PubMed  Google Scholar 

  53. Jardin F, Vieillard-Baron A (2003) Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med 29:1426–1434

    Article  PubMed  Google Scholar 

  54. Criley JM, Blaufuss AH, Kissel GL (1976) Cough-induced cardiac compression. Self-administered from cardiopulmonary resuscitation. JAMA 236:1246–1250

    Article  PubMed  Google Scholar 

  55. Peters J (1999) Mechanical ventilation with PEEP — a unique therapy for failing hearts. Intensive Care Med 25:778–780

    Article  PubMed  Google Scholar 

  56. Pinsky MR, Marquez J, Martin D, Klain M (1987) Ventricular assist by cardiac cycle-specific increases in intrathoracic pressure. Chest 91:709–715

    PubMed  Google Scholar 

  57. Romand JA, Treggiari-Venzi MM, Bichel T, Suter PM, Pinsky MR (2000) Hemodynamic effects of synchonized high-frequency jet ventilation compared with low-frequency intermittent positive-pressure ventilation after myocardial revascularization. Anesthesiology 92:24–30

    Article  PubMed  Google Scholar 

  58. Lemaire F, Teboul J, Cinotti L, et al (1988) Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 69:171–179

    PubMed  Google Scholar 

  59. Fenn WO, Otis AB, Rahn H, Chadwick LE, Hegnauer AH (1947) Displacement of blood from the lungs by pressure breathing. Am J Physiol 151:258–269

    Google Scholar 

  60. Fujita Y (1993) Effects of PEEP on splanchnic hemodynamics and blood volume. Acta Anaesthesiol Scand 37:427–431

    PubMed  Google Scholar 

  61. Peters J, Hecker B, Neuser D, Schaden W (1993) Regional blood volume distribution during positive and negative pressure breathing in supine humans. J Appl Physiol 75:1740–1747

    PubMed  Google Scholar 

  62. Manyari DE, Wang, Cohen J, Tyberg JV (1993) Assessment of the human splanchnic venous volume-pressure relation using radionuclide plethysmography. Circulation 87:1142–1151

    PubMed  Google Scholar 

  63. Bonnet F, Richard C, Glaser P, Lafay M, Guesde R (1982) Changes in hepatic flow induced by continuous positive pressure ventilation in critically ill patients. Crit Care Med 10:703–705

    PubMed  Google Scholar 

  64. Aneman A, Eisenhofer G, Fandriks L, et al (1999) Splanchnic circulation and regional sympathetic outflow during peroperative PEEP ventilation in humans. Br J Anaesth 82:838–842

    PubMed  Google Scholar 

  65. Winsö O, Biber B, Gustavsson B, Holm C, Milsom I, Niemand D (1986) Portal blood flow in man during graded positive end-expiratory pressure ventilation. Intensive Care Med 12:80–85

    PubMed  Google Scholar 

  66. Kiefer P, Nunes S, Kostonen P, Takala J (2000) Effect of positive end-expiratory pressure on splanchnic perfusion in acute lung injury. Intensive Care Med 26:376–383

    Article  PubMed  Google Scholar 

  67. Pinsky MR (1994) Heart-lung interactions during positive-pressure ventilation. New Horiz 2:443–456

    PubMed  Google Scholar 

  68. Drury DR, Henry JP, Goodman J (1947) The effects of continuous pressure breathing on kidney function. J Clin Invest 26:945951

    Google Scholar 

  69. Murdaugh HV, Sieker HO, Manfred F (1959) Effect of intrathoracic pressure on renal hemodynamics, electrolyte excretion and water clearance. J Clin Invest 38:834–842

    PubMed  Google Scholar 

  70. Pannu N, Mehta RL (2002) Mechanical ventilation and renal function: an area of concern? Am J Kidney Dis 39:616–624

    PubMed  Google Scholar 

  71. Ueda H, Neclerio M, Leather RP, Powers SR (1972) Effects of positive end-expiratory pressure ventilation on renal function. Surg Forum 23:209–211

    PubMed  Google Scholar 

  72. Farge D, De La Coussaye JE, Beloucif S, Fratacci MD, Payen DM (1995) Interactions betwee hemdynamic and hormobnal modifications during PEEP-induced antidiuresis and antinatriuresis. Chest 107:1095–1100

    PubMed  Google Scholar 

  73. Hemmer M, Viquerat CE, Suter PM, Vallotton MB (1980) Urinary antidiuretic hormone excretion during mechanical ventilation and weaning in man. Anesthesiology 52:395–400

    PubMed  Google Scholar 

  74. Annat G, Viale JP, Bui Xuan B, et al (1983) Effect of PEEP ventilation on renal function, plasma renin, aldosterone, neurophysins and urinary ADH, and prostaglandins. Anesthesiology 58:136–141

    PubMed  Google Scholar 

  75. Andrivet P, Adnot S, Sanker S, et al (1991) Hormonal interactions and renal function during mechanical ventilation and ANF infusion in humans. J Appl Physiol 70:287–292

    PubMed  Google Scholar 

  76. Steinhoff H, Falke KJ, Schwarzhoff W (1982) Enhanced renal function associated with intermittent mandatory ventilation in acute respiratory. Intensive Care Med 8:69–74

    Article  PubMed  Google Scholar 

  77. Hering R, Peters D, Zinserling J, et al (2002) Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med 28:1426–1433

    Article  PubMed  Google Scholar 

  78. Aidinis SJ, Lafferty J, Shapiro HM (1976) Intracranial responses to PEEP. Anesthesiology 45:275–286

    PubMed  Google Scholar 

  79. Bein T, Kuhr LP, Bele S, Ploner F, Keyl C, Taeger K (2002) Lung recruitment maneuver in patients with cerebral injury: effects on intracranial pressure and cerebral metabolism. Intensive Care Med 28:554–558

    Article  PubMed  Google Scholar 

  80. McGuire G, Crossley D, Richards J, Wong D (1997) Effects of varying levels of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Crit Care Med 25:1059–1062

    Article  PubMed  Google Scholar 

  81. Georgiadis D, Schwarz S, Baumgartner RW, Veltkamp R, Schwab S (2001) Influence of positive end-expiratory pressure on intracranial and cerebral perfusion pressure in patients with stroke. Stroke 32:2088–2092

    PubMed  Google Scholar 

  82. Hering R, Wrigge H, Vorwerk R, et al (2001) The effects of prone positioning on intraabdominal pressure and cardiovascular and renal functions in patients with acute lung injury. Anesth Analg 92:1226–1231

    Article  PubMed  Google Scholar 

  83. Kiefer P, Morin A, Putzke C, Wiedeck H, Georgieff M, Radermacher P (2001) Influence of prone position on gastric mucosal-arterial PCO2 gradients. Intensive Care Med 27:1227–1230

    Article  PubMed  Google Scholar 

  84. Hering R, Vorwerk R, Wrigge H, et al (2002) Prone positioning, systemic hemodynamics, hepatic indocyanine green kinetics, and gastric intramucosal energy balance in patients with acute lung injury. Intensive Care Med 28:53–58

    Article  PubMed  Google Scholar 

  85. Matejovic M, Rokyta R, Radermacher P, Krouzecky A, Sramek V, Novak I (2002) Effect of prone position on hepato-splanchnic hemodynamics in acute lung injury. Intensive CareMed 28:1750–1755

    Article  Google Scholar 

  86. Bein T, Metz C, Keyl C, Pfeifer M, Taeger K (1996) Effects of extreme lateral posture on hemodynamics and plasma atrial natriuretic peptide levels in critically patients. Intensive Care Med 22:651–655

    PubMed  Google Scholar 

  87. Buhre W, Weyland A, Grüne F, et al (1998) Influence of arterial carbon dioxide tension on systemic vascular resistance in patients undergoing cardiopulmonary bypass. Acta Anaesthesiol Scand 42:167–171

    PubMed  Google Scholar 

  88. Kazmaier S, Weyland A, Buhre W, et al (1998) Effects of respiratory alkalosis and acidosis on myocardial blood flow and metabolism in patients with coronary artery disease. Anesthesiology 89:831–837

    Article  PubMed  Google Scholar 

  89. Mas A, Saura P, Joseph D, et al (2000) Effect of acute moderate changes in PaCO2 on global hemodynamics and gastric perfusion. Crit Care Med 28:360–365

    Article  PubMed  Google Scholar 

  90. Whalen RE, Saltzman HA, Holloway DH, McIntosh HD, Sieker HO, Brown IW (1965) Cardiovascular and blood gas responses to hyperbaric oxygen. Am J Cardiol 15:638–646

    Article  PubMed  Google Scholar 

  91. Stamler JS, Jia L, Eu JP, et al (1997) Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276:2034–2037

    Article  PubMed  Google Scholar 

  92. Reinhart K, Spies C, Meier-Hellmann A, et al (1995) N-acetylcysteine preserves oxygen consumption and gastric mucosal pH during hyperoxic ventilation. Am J Respir Crit Care Med 151:773–779

    PubMed  Google Scholar 

  93. Mak S, Azevedo ER, Liu PP, Newton GE (2001) Effect of hyperoxia on left ventricular function and filling pressures in patients with and without congestive heart failure. Chest 120:467–473

    Article  PubMed  Google Scholar 

  94. Mak S, Egri Z, Tanna G, Coleman R, Newton GE (2002) Vitamin C prevents hyperoxia-mediated vasoconstriction and impairment of endothelium-dependent vasodilation. AmJ Physiol 282:H2414–H2421

    Google Scholar 

  95. Wietasch GJK, Mielck F, Scholz M, von Spiegel T, Stephan H, Hoeft A (2000) Bedside assessment of cerebral blood flow by double-indicator dilution technique. Anesthesiology 92:367–375

    Article  PubMed  Google Scholar 

  96. Coles JP, Minhas PS, Fryer TD, et al (2002) Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med 30:1950–1959

    Article  PubMed  Google Scholar 

  97. Imberti R, Bellinzona G, Langer M (2002) Cerebral tissue PO2 and SjvO2 changes during moderate hyperventilation in patients with severe traumatic brain injury. J Neurosurg 96:97–102

    PubMed  Google Scholar 

  98. Ichai C, Levraut J, Baruch I, Sama-Long C, Leverve X, Grimaud D (1998) Hypocapnia does not alter hepatic blood flow or oxygen consumption in patients with head injury. Crit Care Med 26:1725–1730

    Article  PubMed  Google Scholar 

  99. Kiefer P, Nunes S, Kostonen P, Takala J (2001) Effect of an acute increase in PCO2 on splanchnic perfusion and metabolism. Intensive Care Med 27:775–778

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calzia, E., Iványi, Z., Radermacher, P. (2005). Determinants of Blood Flow and Organ Perfusion. In: Pinsky, M.R., Payen, D. (eds) Functional Hemodynamic Monitoring. Update in Intensive Care and Emergency Medicine, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26900-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-26900-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22349-8

  • Online ISBN: 978-3-540-26900-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics