Skip to main content

Fully Developed Turbulent Pipe Flow

  • Chapter
Book cover Fluid Mechanics of Flow Metering

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharya M, Bornstein J, Escudier MP (1986) Turbulent boundary layers on rough surfaces. Experiments in Fluids 4:33–47

    Article  Google Scholar 

  • Afzal N (1976) Millikan's argument at moderately large Reynolds number. Phys. Fluids 19:600–602

    Article  Google Scholar 

  • Afzal N (2001): Power law and log law velocity profiles in fully developed turbulent pipe flow: equivalent relations at large Reynolds numbers. Acta Mechanica, Vol. 151:171–183

    Article  MATH  Google Scholar 

  • Afzal N, Yajnik K (1973) Analysis of turbulent pipe and channel flows at moderately large Reynolds number. J. Fluid Mech. 61:23–31

    Article  Google Scholar 

  • AGARD (1998) A selection of test cases for the validation of large-eddy simulations of turbulent flows. AGARD Advisory Report 345

    Google Scholar 

  • Barenblatt GI (1993) Scaling laws for fully developed turbulent shear flows. Part I: Basic hypothesis and analysis. J. Fluid Mech. 248:513–520

    Article  MATH  MathSciNet  Google Scholar 

  • Barenblatt GI, Chorin AJ (1998) Scaling of the intermediate region in wall-bounded turbulence: The power law. Phys. Fluids, Vol. 10:1043–1044

    Article  MathSciNet  MATH  Google Scholar 

  • Barenblatt GI, Chorin AJ, Prostokishin VM (1997a) Scaling laws for fully developed turbulent flow in pipes. Appl. Mech. Rev., Vol. 50:413–429

    Article  Google Scholar 

  • Barenblatt GI, Chorin AJ, Prostokishin VM (1997b): Scaling laws for fully developed turbulent flow in pipes: Discussion of experimental data. Proc. Natl. Acad. Sci. USA, Vol. 94, 773

    Article  MATH  Google Scholar 

  • Benedict RP (1980) Fundamentals of Pipe Flow. John Wiley Sons, New York

    Google Scholar 

  • Blasius H (1913) Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Forschg. Arb. Ing.-Wesen, Heft 131, Berlin

    Google Scholar 

  • Boussinesq J (1872) Essai sur la theorie des eaux courantes. Memoires Acad. des Sciences, Vol. 13, No. 1, Paris

    Google Scholar 

  • Bradshaw P (2000) A note on “critical roughness height” and “transitional roughness”. Phys. Fluids 12:1611–1614

    Article  MathSciNet  MATH  Google Scholar 

  • Churchill SW (2001) Turbulent flow and convection: the prediction of turbulent flow and convection in a round tube. In: Advances in Heat Transfer, Academic Press, San Diego, Vol. 34:255–361

    Google Scholar 

  • Colebrook CF (1938/1939) Turbulent flow in pipes with particular references to the transition region between the smooth and the rough pipe laws. J. Inst. Civil Eng., London, 11:133–156 and 12:393–422

    Google Scholar 

  • Colebrook CF, White CM (1937) Experiments with fluid friction in roughened pipes. Proc. Royal Soc., London, Series A 161:367–381

    Google Scholar 

  • den Toonder JMJ (1995) Drag reduction by polymer additives in a turbulent pipe flow: Laboratory and numerical results. Ph. D. thesis, Delft University of Technology

    Google Scholar 

  • Durst F, Jovanovic J, Sender J (1995) LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech. 295:305–335

    Article  Google Scholar 

  • Gersten K, Herwig H (1992) Strömungsmechanik-Grundlagen der Impuls-, Wärme-und Stoffübertragung aus asymptotischer Sicht. Vieweg-Verlag, Braunschweig, Wiesbaden

    Google Scholar 

  • Gersten K, Papenfuss HD, Kurschat T, Genillon P, Fernández Pérez F, Revell N (2000) New transmission-factor formula proposed for gas pipelines. Oil & Gas Journal, February 14

    Google Scholar 

  • Grigson CWB (1984) Nikuradse's experiment. AIAA Journal 22:999–1001

    Google Scholar 

  • Kestin J, Richardson PD (1963) Heat transfer across turbulent incompressible boundary layers. Int. J. Heat Mass Transfer 6:147–189. Also: Forsch. Ing.-Wesen 29:93–104

    Article  Google Scholar 

  • McKeon BJ, Li J, Jiang W, Morrison JF, Smits A (2003a) Pitot probe corrections in fully-developed turbulent pipe flow. Meas. Sci. Technol. 14:1449–1458

    Article  Google Scholar 

  • McKeon BJ, Morrison JF, Jiang W, Li J, Smits AJ (2003b) Revised log-law constants for fully-developed turbulent pipe flow. In: AJ Smits (Ed.): IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • McKeon BJ, Li J, Jiang W, Morrison JF, Smits AJ (2004): Further observations on the mean velocity in fully-developed pipe flow. J. Fluid Mech. 501:135–147

    Article  MATH  Google Scholar 

  • Nikuradse J (1932) Gesetzmäßigkeiten der turbulenten Strömung in glatten Rohren. VDI-Forsch. Arb. Ing.-Wesen

    Google Scholar 

  • Nikuradse J (1933) Strömungsgesetze in rauhen Rohren. VDI-Forsch.-Heft 361; VDI-Verlag, Berlin

    Google Scholar 

  • Revell N (1998) Internal Report of BG Technology, PR 091

    Google Scholar 

  • Reichardt H (1951) Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Z. angew. Math. Mech. 31:203–219

    Google Scholar 

  • Rotta JC (1956) Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr. Ing. Arch. 24:258–281

    Article  Google Scholar 

  • Schlichting H, Gersten K (2000) Boundary-Layer Theory. Springer-Verlag, Berlin, Heidelberg; 8th Edition, Corrected Printing 2003

    MATH  Google Scholar 

  • Schultz MP (2002) The relationship between frictional resistance and roughness for surfaces smoothed by sanding. J. Fluids Eng. 124:492–499

    Article  Google Scholar 

  • Speidel L (1962) Determination of the necessary surface quality and possible losses due to roughness in steam turbines. Elektrizitätswirtschaft 61:799–804

    Google Scholar 

  • Uhl AE (1965) Steady flow in gas pipelines. American Gas Association. Technical Report No. 10

    Google Scholar 

  • Van Dyke M (1975) Perturbation Methods in Fluid Mechanics. The Parabolic Press, Stanford, California

    MATH  Google Scholar 

  • von Kármán Th (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Göttingen. Math. Phys. Klasse: 58–76 und Verhandlg. des III. Intern. Kongresses für Techn. Mechanik, Stockholm, Teil I:85–93

    Google Scholar 

  • Waigh DR, Kind RJ (1998) Improved aerodynamic characterization of regular three-dimensional roughness. AIAA J. 36: 1117–1119

    Article  Google Scholar 

  • Wosnik M, Castillo L, George WK (2000) A theory for turbulent pipe and channel flows. J. Fluid Mech. 421:115–145

    Article  MATH  Google Scholar 

  • Zagarola MW, Smits AJ (1998) Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373:33–79

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Merzkirch

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gersten, K. (2005). Fully Developed Turbulent Pipe Flow. In: Merzkirch, W. (eds) Fluid Mechanics of Flow Metering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26725-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-26725-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22242-2

  • Online ISBN: 978-3-540-26725-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics