Skip to main content

Satellite Remote Sensing of Urban Heat Islands: Current Practice and Prospects

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artis, D. A., and W. H. Carnahan, 1982. Survey of emissivity variability in thermography of urban areas, Remote Sensing of Environment, 12:313–329.

    Article  Google Scholar 

  • Asrar, G., Fuchs, M., Kanemasu, E.T., and Hatfield, J.L. 1984. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal, 76, 300–306.

    Google Scholar 

  • Arvidson, T. 2002. Personal Correspondence. Landsat 7 Senior Systems Engineer, Landsat Project Science Office, Goddard Space Flight Center, Washington, D.C.

    Google Scholar 

  • Balling, R. C., and S. W. Brazell, 1988. High resolution surface temperature patterns in a complex urban terrain, Photogrammetric Engineering and Remote Sensing, 54:1289–1293.

    Google Scholar 

  • Bartolucci, L. and M. Chang. 1988. Look-up tables to convert Landsat T.M. Thermal IR data to water surface temperatures. Geocarto International 3, 61–71.

    Google Scholar 

  • Becker, F., and Li, Z.-L. 1990. Temperature-independent spectral indices in thermal infrared bands. Remote Sensing of Environment, 32, 17–33.

    Article  Google Scholar 

  • Betts, A., Ball, J., Beljaars, A., Miller, M. and Viterbo, P. 1996. The land surface-atmosphere interaction: a review based on observational and global modeling perspectives. Journal of Geophysical Research, 101(D3), 7209–7225.

    Article  Google Scholar 

  • Boegh, E., Soegaard, H., Hanan, N., Kabat, P., and Lesch, L. 1998. A remote sensing study of the NDVI-Ts relationship and the transpiration from sparse vegetation in the Sahel based on high resolution satellite data. Remote Sensing of Environment, 69(3), 224–240.

    Article  Google Scholar 

  • Byrne, G. F., 1979. Remotely sensed land cover temperature and soil water status — a brief review, Remote Sensing of Environment, 8:291–305.

    Article  Google Scholar 

  • Campbell, J.B. 2002. Introduction to Remote Sensing (Third Edition). New York: The Guilford Press.

    Google Scholar 

  • Carnahan, W. H., and R. C. Larson, 1990. An analysis of an urban heat sink, Remote Sensing of Environment, 33:65–71.

    Article  Google Scholar 

  • Carson, T.N., Gillies, R.R. and E. M. Perry. 1994. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Review, 9: 161–173.

    Google Scholar 

  • Cassels, V., Sobrino, J. A., and C. Coll, 1992a. On the use of satellite thermal data for determining evapotranspiration in partially vegetated areas, International Journal of Remote Sensing, 13:2669–2682.

    Google Scholar 

  • Cassels, V., Sobrino, J. A., and C. Coll, 1992b. A physical model for interpreting the land surface temperature obtained by remote sensors over incomplete canopies, Remote Sensing of Environment, 39:203–211.

    Article  Google Scholar 

  • Caselles, V., Coll, C., Valor, E., and Rubio, E., 1995. Mapping land surface emissivity using AVHRR data: application to La Mancha, Spain. Remote Sensing Review, 12, 311–333.

    Google Scholar 

  • Dash, P., Gottsche, F.-M., Olesen, F.-S. and Fischer, H. 2002. Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. International Journal of Remote Sensing, 23(13), 2563–2594.

    Article  Google Scholar 

  • De Cola, L., 1989. Fractal analysis of a classified Landsat scene, Photogrammetric Engineering and Remote Sensing, 55(5):601–610.

    Google Scholar 

  • DeWitt, J. and M. Brennan. 2001. Taking the Heat, Imaging Notes 16(6): 20–23.

    Google Scholar 

  • Emerson, C.W., Lam, N.S.N., and D.A. Quattrochi, 1999. Multi-scale fractal analysis of image texture and pattern, Photogrammetric Engineering and Remote Sensing, 65(1):51–61.

    Google Scholar 

  • Franca, G.B. and Cracknell, A.P. 1994. Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in north-eastem Brazil. International Journal of Remote Sensing, 15, 1695–1712.

    Google Scholar 

  • Friedl, M.A. (2002). Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sensing of Environment, 79, 344–354.

    Article  Google Scholar 

  • Friedl, M.A. and Davis, F.W. 1994. Sources of variation in radiometric surface temperature over a tallgrass prairie. Remote Sensing of Environment, 48, 1–17.

    Article  Google Scholar 

  • Frohn, R. C. 1998. Remote Sensing for Landscape Ecology. Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Gallo, K.P., McNab, A.L., Karl, T.R., Brown, J.F., Hood, J.J., and J.D. Tarpley, 1993. The use of NOAA AVHRR data for assessment of the urban heat island effect, Journal of Applied Meteorology, 32:899–908.

    Article  Google Scholar 

  • Gallo, K.P. and T.W. Owen. 1998. Assessment of urban heat island: a multisensor perspective for the Dallas-Ft. Worth, USA region. Geocarto International, 13(4): 35–41.

    Google Scholar 

  • Gallo, K.P., J.D. Tarpley, A.L. McNab, and T.R. Karl. 1995. Assessment of urban heat islands: a satellite perspective”, Atmospheric Research, 37: 37–43.

    Article  Google Scholar 

  • Gillespie, A.R. 1985. Lithologic mapping of silicate rocks using TIMS. Proceedings TIMS Data User’s Workshop (Pasadena, CA: Jet Propulsion Laboratory), JPL Pub. 86–38, pp.29–44.

    Google Scholar 

  • Gillespie, A.R., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S.J., and Kahle, A.B. 1998. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113–1126.

    Article  Google Scholar 

  • Gillies, R.R., and Carlson, T.N., 1995, Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. Journal of Applied Meteorology, 34, 745–756.

    Article  Google Scholar 

  • Gillies, R.R., Carlson, T.N., Cui, J., Kustas, W.P., and Humes, K.S., 1997, A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation index (NDVI) and surface radiant temperature. International Journal of Remote Sensing, 18, 3145–3166.

    Article  Google Scholar 

  • Goetz, S.J. 1997. Multisensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing, 18(1), 71–94.

    Article  Google Scholar 

  • Goward, S.N., Xue, Y. and K.P. Czajkowski. 2002. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: an exploration with the simplified simple biosphere model. Remote Sensing of Environment, 79, 225–242.

    Article  Google Scholar 

  • Jasinski, M.F. 1990. Sensitivity of the Normalized Difference Vegetation Index to subpixel canopy cover, soil albedo, and pixel scale. Remote Sensing of Environment, 32:169–187.

    Article  Google Scholar 

  • Karl, T.R., H.F. Diaz, and G. Kukla. 1988. Urbanization: Its detection and effect in the United States climate record. Journal of Climate 1: 1099–1123.

    Article  Google Scholar 

  • Kealy, P.S. and Gabell, A.R. 1990. Estimation of emissivity and temperature using alpha coefficients. Proceedings of Second TIMS Workshop (Pasadena, CA: Jet Propulsion Laboratory), JPL Pub. 90–95, pp.11–15.

    Google Scholar 

  • Kidder, S.Q., and H.T. Wu, 1987. A multispectral study of the St. Louis area under snow-covered conditions using NOAA-7 AVHRR data, Remote Sensing of Environment, 22:159–172.

    Article  Google Scholar 

  • Kim, H.H., 1992. Urban heat island, International Journal of Remote Sensing, 13(12):2319–2336.

    Google Scholar 

  • Kimes, D.J., 1983. Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques, Remote Sensing of Environment, 13:33–55.

    Article  Google Scholar 

  • Lam, N.S.N., 1990. Description and measurement of Landsat TM images using fractals, Photogrammetric Engineering and Remote Sensing, 56(2):187–195.

    Google Scholar 

  • Lam, N.S.N., Qiu, H., Quattrochi, D.A. and C. W. Emerson, 2002. An evaluation of fractal methods for characterizing image complexity, Cartography and Geographic Information Science, 29(1):25–35.

    Google Scholar 

  • Lambin, E.F. and D. Ehrlich. 1996. The surface temperature-vegetation index space for land cover and land-cover change analysis, International Journal of Remote Sensing, 17, 463–487.

    Google Scholar 

  • Landsberg, H.E.1981. The Urban Climate. New York: Academic Press.

    Google Scholar 

  • Larson, R.C. and W.H. Carnahan, 1997. The influence of surface characteristics on urban radiant temperatures, Geocarto International, 12(3):5–16.

    Google Scholar 

  • Lillesand, T.M. and R.W. Kiefer. 2000. Remote Sensing and Image Interpretation, John Wiley and Sons, New York, p. 330.

    Google Scholar 

  • Lo, C.P., Quattrochi, D.A. and J.C. Luvall, 1997. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect, International Journal of Remote Sensing, 18:287–304.

    Article  Google Scholar 

  • Mather, A. S., 1986, Land Use (London: Longman).

    Google Scholar 

  • Nichol, J.E., 1994. A GIS-based approach to microclimate monitoring in Singapore’s high-rise housing estates, Photogrammetric Engineering and Remote Sensing, 60:1225–1232.

    Google Scholar 

  • Nichol, J.E., 1996. High-resolution surface temperature patterns related to urban morphology in a tropical city: a satellite-based study. Journal of Applied Meteorology, 35(1): 135–146.

    Article  Google Scholar 

  • Oke, T.R., 1979. Technical Note No. 169: Review of Urban Climatology, World Meteorological Organization, Geneva, Switzerland, 43 p.

    Google Scholar 

  • Oke, T.R. 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1–24.

    Article  Google Scholar 

  • Oke, T.R., Johnson, G.T., Steyn, D.G. and I.D. Watson. 1991. Simulation of surface urban heat islands under ideal conditions at night. Part 2: Diagnosis of causation. Boundary Layer Meteorology, 56, 339–358.

    Google Scholar 

  • Owen, T.W., Carlson, T.N. and R.R. Gillies. 1998. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 19(9), 1663–1681.

    Article  Google Scholar 

  • Prata, A.J. 1993. Land surface temperatures derived from the advanced very high resolution radiometer and the along-track scanning radiometer 1. Theory. Journal of Geophysical Research, 98, 16689–16702.

    Google Scholar 

  • Prata, A.J., Caselles, V., Coll, C., Sobrino, J.A. and Ottle, C. 1995. Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote Sensing Reviews, 12, 175–224.

    Google Scholar 

  • Qiu, H.L., Lam, N.S.N., Quattrochi, D.A., and J.A. Gamon, 1999. Fractal characterization of hyperspectral imagery, Photogrammetric Engineering and Remote Sensing, 65(1):63–71.

    Google Scholar 

  • Quattrochi, D.A., and N.S. Goel, 1995. Spatial and temporal scaling of thermal remote sensing data, Remote Sensing Review, 12:255–286.

    Google Scholar 

  • Quattrochi, D.A., and J.C. Luvall, 1999. High Spatial Resolution Airborne Multispectral Thermal Infrared Data to Support Analysis and Modeling Tasks in the EOS IDS Project ATLANTA, URL: http://wwwghcc.msfc.nasa.gov/atlanta/, Global Hydrology and Climate center, NASA, Huntsville, Alabama (last date accessed: 1 June 2003).

    Google Scholar 

  • Quattrochi, D.A. and M.K. Ridd, 1994. Measurement and analysis of thermal energy responses from discrete urban surfaces using remote sensing data, International Journal of Remote Sensing, 15(10):1991–2022.

    Google Scholar 

  • Quattrochi, D.A. and M.K. Ridd, 1998. Analysis of vegetation within a semi-arid urban environment using high spatial resolution airborne thermal infrared remote sensing data, Atmospheric Environment, 32(1):19–33.

    Article  Google Scholar 

  • Roth, M., Oke, T.R. and W.J. Emery, 1989. Satellite derived urban heat islands from three coastal cities and the utilisation of such data in urban climatology, International Journal of Remote Sensing, 10:1699–1720.

    Google Scholar 

  • Sandholt, I., Rasmussen, K. and J. Andersen. 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79, 213–224.

    Article  Google Scholar 

  • Schmugge, T., Hook, S.J. and C. Coll. 1998. Recovering surface temperature and emissivity from thermal infrared multispectral data. Remote Sensing of Environment, 65, 121–131.

    Article  Google Scholar 

  • Small, C. 2001. Estimation of urban vegetation abundance by spectral mixture analysis. International Journal of Remote Sensing, 22(7), 1305–1334.

    Article  Google Scholar 

  • Snyder, W.C., Wan, Z., Zhang, Y. and Feng, Y.-Z., 1998. Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19(14), 2753–2774.

    Article  Google Scholar 

  • Sobrino, J.A. and N. Raissouni. 2000. Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. International Journal of Remote Sensing, 21(2), 353–366.

    Article  Google Scholar 

  • Streutker, D.R. 2002. A remote sensing study of the urban heat island of Houston, Texas. International Journal of Remote Sensing, 23(13), 2595–2608.

    Article  Google Scholar 

  • Streutker, D.R. 2003. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment, 85, 282–289.

    Article  Google Scholar 

  • Valor, E., and Caselles, V. 1996. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing of Environment, 57, 167–184.

    Article  Google Scholar 

  • Watson, K. 1992. Spectral ratio method for measuring emissivity. Remote Sensing of Environment, 42, 113–116.

    Article  Google Scholar 

  • Welch, R., T. Jordan, H. Lang, and H. Murakami, 1998, ASTER as a source for topographic data in the late 1990’s, IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1282–1289.

    Article  Google Scholar 

  • Weng, Q., 2001. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China, International Journal of Remote Sensing, 22(10):1999–2014.

    Google Scholar 

  • Weng. Q. 2003. Fractal analysis of satellite-detected urban heat island effect. Photogrammetric Engineering and Remote Sensing, 69(5): 555–566.

    Google Scholar 

  • Yang, W., Yang, L. and J.W. Merchnat. 1997. An analysis of AVHRR/NDVI-ecoclimatological relations in Nebraska, U.S.A. International Journal of Remote Sensing, 18(10):2161–2180.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weng, Q., Larson, R.C. (2005). Satellite Remote Sensing of Urban Heat Islands: Current Practice and Prospects. In: Geo-Spatial Technologies in Urban Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26676-3_10

Download citation

Publish with us

Policies and ethics