Skip to main content

The Paullones: A Family of Pharmacological Inhibitors of Cyclin-Dependent Kinases and Glycogen Synthase Kinase 3

  • Chapter
Inhibitors of Protein Kinases and Protein Phosphates

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 167))

Abstract

Cyclin-dependent kinases (CDKs) regulate multiple pathways such as the cell division cycle, apoptosis, transcription, and neuronal functions. Glycogen synthase kinase 3 (GSK-3) plays a key role in Wnt signaling, cellular response to insulin, cell death, cell proliferation, maintenance of “stemness.” Both families of kinases are clearly involved in the onset and development of major human diseases like cancer, neurodegenerative disorders (Alzheimer’s and Parkinson’s disease, stroke), diabetes, restenosis, viral infections, etc. Homologues of these kinases also regulate the proliferation of unicellular parasites. For these reasons an intensive search for pharmacological inhibitors of these protein kinases has been carried out during the last decade. Numerous small molecular weight compounds have been described that directly compete with ATP for binding to the catalytic site of the kinases. We here illustrate the development of this research area by reviewing the paullones, a family of potent and rather selective inhibitors of CDKs and GSK-3, from their discovery and optimisation to their molecular and cellular characterisation. The potential medical applications of CDK/GSK-3 inhibitors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JA (2001) Kinetic and catalytic mechanisms of protein kinases. Chem Rev 101:2271–2290

    Article  PubMed  CAS  Google Scholar 

  • Adams JL, Lee D (1999) Recent progress towards the identification of selective inhibitors of serine/threonine protein kinases. Curr Opin Drug Discov Devel 2:96–109

    CAS  Google Scholar 

  • Bain J, McLauchlan H, Elliott M, et al (2003) The specificities of protein kinase inhibitors: an update. Biochem J 371:199–204

    Article  PubMed  CAS  Google Scholar 

  • Bertrand JA, Thieffine S, Vulpetti A, et al (2003) Structural characterization of the GSK-3β active site using selective and non-selective ATP-mimetic inhibitors. J Mol Biol 333:393–407

    Article  PubMed  CAS  Google Scholar 

  • Bhat R, Xue Y, Berg S, et al (2003) Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 278:45937–45945

    Article  PubMed  CAS  Google Scholar 

  • Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, Tsai LH, Kwon YT, Girault JA, Czernik AJ, Huganir RL, Hemmings HC Jr, Nairn AC, Greengard P (1999) Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 402:669–671

    PubMed  CAS  Google Scholar 

  • Borgne A, Meijer L (1996) Sequential dephosphorylation of p34(cdc2) on Thr-14 and Tyr-15 at the prophase/metaphase transition. J Biol Chem 271:27847–27854

    PubMed  CAS  Google Scholar 

  • Bridges AJ (2001) Chemical inhibitors of protein kinases. Chem Rev 101:2541–2571

    Article  PubMed  CAS  Google Scholar 

  • Capdeville R, Silberman S, Dimitrijevic S (2002a) Imatinib: the first 3 years. Eur J Cancer 38(Suppl 5):77–82

    Google Scholar 

  • Capdeville R, Buchdunger E, Zimmermann J, et al (2002b) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1:493–502

    Article  PubMed  CAS  Google Scholar 

  • Caricasole A (2003) The Wnt pathway, cell-cycle activation and beta-amyloid: novel therapeutic strategies in Alzheimer’s disease? Trends Pharmacol Sci 24:233–238

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (2001) The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem 268:5001–5010

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    Article  PubMed  CAS  Google Scholar 

  • Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2:769–776

    Article  PubMed  CAS  Google Scholar 

  • Cruz JC, Tseng HC, Goldman JA, et al (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B, Woodgett J (2003) Alzheimer’s disease: mental plaque removal. Nature 423:392–393

    PubMed  Google Scholar 

  • Dhavan R, Tsai L-H (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759

    Article  PubMed  CAS  Google Scholar 

  • Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Doerig C, Meijer L, Mottram J (2002) Protein kinases as drug targets in parasitic protozoa. Trends Parasitol 18:366–371

    Article  PubMed  CAS  Google Scholar 

  • Dorronsoro I, Castro A, Martinez A (2002) Inhibitors of glycogen synthase kinase-3: future therapy for unmet medical needs? Expert Opin Ther Patents 12:1527–1536

    Article  CAS  Google Scholar 

  • Droucheau E, Primot A, Thomas V, Mattei D, Knockaert M, Richardson C, Sallicandro P, Alano P, Jafarshad A, Baratte B, Kunick C, Parzy D, Pearl L, Doerig C, Meijer L (2004) Plasmodium falciparum glycogen synthase kinase-3: molecular model, expression, intracellular localisation and selective inhibitors. Biochim Biophys Acta 1697:181–96

    PubMed  CAS  Google Scholar 

  • Dumas J (2001) Protein kinase inhibitors: emerging pharmacophores 1997–2000. Expert Opin Ther Patents 11:405–429

    Article  CAS  Google Scholar 

  • Eldar-Finkelman H (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 8:126–132

    Article  PubMed  CAS  Google Scholar 

  • Fischer PM (2003) CDK versus GSK-3 inhibition: a purple haze no longer? Chem Biol 10:1144–1146

    Article  PubMed  CAS  Google Scholar 

  • Fischer PM, Endicott J, Meijer L (2003) Cyclin-dependent kinase inhibitors. Prog Cell Cycle Res 5:235–248

    PubMed  Google Scholar 

  • Garcia-Echeverria C, Traxler P, Evans DB (2000) ATP site-directed competitive and irreversible inhibitors of protein kinases. Med Res Rev 20:28–57

    PubMed  CAS  Google Scholar 

  • Gerber PR (1998) Charge distribution from a simple molecular orbital type calculation and non-bonding interaction terms in the force field MAB. J Comput Aided Mol Des 12:37–51

    Article  PubMed  CAS  Google Scholar 

  • Godl K, Wissing J, Kurtenbach A, et al (2003) An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc Natl Acad Sci USA 100:15434–15439

    Article  PubMed  CAS  Google Scholar 

  • Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65:391–426

    PubMed  CAS  Google Scholar 

  • Gussio R, Zaharevitz D, McGrath CF, et al (2000) Structure-based design modifications of the paullone molecular scaffold for cyclin-dependent kinase inhibition. Anticancer Drug Des 15: 53–66

    PubMed  CAS  Google Scholar 

  • Hanks SK (2003) Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol 4:111:1–7

    Google Scholar 

  • Hardcastle IR, Golding BT, Griffin RJ (2002) Designing inhibitors of cyclin-dependent kinases. Annu Rev Pharmacol Toxicol 42:325–348

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Adams PD (2001) Cyclin-dependent kinases. Chem Rev 101:2511–2526

    Article  PubMed  CAS  Google Scholar 

  • Jackson MD, Denu JM (2001) Molecular reactions of protein phosphatases-insights from structure and chemistry. Chem Rev 101:2313–2340

    Article  PubMed  CAS  Google Scholar 

  • Kaytor MD, Orr HT (2002) The GSK3 beta signaling cascade and neurodegenerative disease. Curr Opin Neurobiol 12:275–278

    Article  PubMed  CAS  Google Scholar 

  • Kennelly PJ (2001) Protein phosphatases-a phylogenetic perspective. Chem Rev 101:2291–2312

    Article  PubMed  CAS  Google Scholar 

  • Knockaert M, Meijer L (2002) Identifying in vivo targets of cyclin-dependent kinase inhibitors by affinity chromatography. Biochem Pharmacol 64:819–825

    Article  PubMed  CAS  Google Scholar 

  • Knockaert M, Greengard P, Meijer L (2002a) Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci 23:417–425

    Article  PubMed  CAS  Google Scholar 

  • Knockaert M, Viking K, Schmitt S (2002b) Intracellular targets of paullones. Identification following affinity purification on immobilized inhibitor. J Biol Chem 277:25493–25501

    Article  PubMed  CAS  Google Scholar 

  • Krupa A, Srinivasan N (2002) The repertoire of protein kinases encoded in the draft version of the human genome: atypical variations and uncommon domain combinations. Genome Biol 3:Research0066.1-006614

    Google Scholar 

  • Kunick C (1992) Synthese von 7,12-Dihydro-indolo[3,2-d][1]benzazepin-6-(5 H)-onen und 6,11-Dihydro-thieno-[3′,2′:2,3]azepino[4,5-b]indol-5(4 H)-on. Arch Pharm (Weinheim) 325:297–299

    CAS  Google Scholar 

  • Kunick C, Schultz C, Lemcke T (2000) 2-Substituted paullones: CDK1/cyclin B-inhibiting property and in vitro antiproliferative activity. Bioorg Med Chem Lett 10:567–569

    Article  PubMed  CAS  Google Scholar 

  • Kunick C, Lauenroth K, Wieking K, et al (2004) Evaluation and comparison of 3D-QSAR-models for CDK1, CDK5 and GSK-3 inhibition by paullones. J Med Chem 47:22–36

    Article  PubMed  CAS  Google Scholar 

  • Lahusen T, De Siervi A, Kunick C (2003) Alsterpaullone, a novel cyclin-dependent kinase inhibitor, induces apoptosis by activation of caspase-9 due to perturbation in mitochondrial membrane potential. Mol Carcinog 36:183–194

    Article  PubMed  CAS  Google Scholar 

  • Leclerc S, Garnier M, Hoessel R (2001) Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 276:251–260

    PubMed  CAS  Google Scholar 

  • Leost M, Schultz C, Link A (2000) Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. Eur J Biochem 267:5983–5994

    Article  PubMed  CAS  Google Scholar 

  • Lyon MA, Ducruet AP, Wipf P, et al (2002) Dual-specificity phosphatases as targets for antineoplastic agents. Nat Rev Drug Discov 1:961–976

    Article  PubMed  CAS  Google Scholar 

  • Maccioni RB, Otth C, Concha II, et al (2001) The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer’s pathology. Eur J Biochem 268:1518–1527

    PubMed  CAS  Google Scholar 

  • Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1:222–231

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M, Ortega S, Barbacid M (2000) Genetic analysis of mammalian cyclin-dependent kinases and their inhibitors. Biol Chem 381:827–838

    Article  PubMed  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Castro A, Dorronsoro I, et al (2002) Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med Res Rev 22:373–384

    Article  PubMed  CAS  Google Scholar 

  • Meijer L, Borgne A, Mulner O, et al (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243: 527–536

    Article  PubMed  CAS  Google Scholar 

  • Meijer L, Skaltsounis AL, Magiatis P, et al (2003) GSK-3 selective inhibitors derived from Tyrian purple indirubins. Chem Biol 10: 1–12

    Article  CAS  Google Scholar 

  • Monaco EA 3rd, Vallano ML (2003) Cyclin-dependent kinase inhibitors: cancer killers to neuronal guardians. Curr Med Chem 10:367–379

    PubMed  CAS  Google Scholar 

  • Monks A, Scudiero DA, Johnson GS, et al (1997) The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets. Anti-Cancer Drug Des 12:533–541

    CAS  Google Scholar 

  • Morgan D (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  PubMed  CAS  Google Scholar 

  • Noble W, Olm V, Takata K, et al (2003) Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38:555–565

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Owa T, Sato T, et al (2003) Quantitative chemical proteomics for identifying candidate drug targets. Anal Chem 75:2159–2165

    Article  PubMed  CAS  Google Scholar 

  • Paull KD (1992) Identification of novel antimitotic agents acting at the tubulin level by computer-assisted evaluation of differential cytotoxicity data. Cancer Res 52:3892–3900

    PubMed  CAS  Google Scholar 

  • Paull KD (1995) Prediction of biochemical mechanism of action from the in vitro antitumor screen of the National Cancer Institute. In: Foye WO (ed) Cancer Chemotherapeutic Agents. American Chemical Society Books, Washington, pp 8–45

    Google Scholar 

  • Pavletich NP (1999) Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287:821–828

    Article  PubMed  CAS  Google Scholar 

  • Phiel CJ, Wilson CA, Lee VM, et al (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 423:435–439

    Article  PubMed  CAS  Google Scholar 

  • Primot A, Baratte B, Gompel M, et al (2000) Purification of GSK-3 by affinity chromatography on immobilized axin. Protein Expr Purif 20:394–404

    PubMed  CAS  Google Scholar 

  • Sausville EA (2002) Complexities in the development of cyclin-dependent kinase inhibitor drugs. Trends Mol Med 8:S32–S37

    Article  PubMed  CAS  Google Scholar 

  • Schultz C, Link A, Leost M, et al (1999) Paullones, a series of cyclin-dependent kinase inhibitors: synthesis, evaluation of CDK1/cyclin B inhibition, and in vitro antitumor activity. J Med Chem 42:2909–2919

    Article  PubMed  CAS  Google Scholar 

  • Sim AT, Ludowyke RI (2002) The complex nature of protein phosphatases. IUBMB Life 53:283–286

    Article  PubMed  CAS  Google Scholar 

  • Smith PD, Crocker SJ, Jackson-Lewis V, et al (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 100:13650–13655

    PubMed  CAS  Google Scholar 

  • Sridhar R, Hanson-Painton O, Cooper DR (2000) Protein kinases as therapeutic targets. Pharm Res 17:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Vesely J, Havlicek L, Strnad M, et al (1994) Inhibition of cyclin-dependent kinases by purine analogues. Eur J Biochem 224:771–786

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Liu SH, Fu YP, et al (2003) Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6:1039–1047

    PubMed  CAS  Google Scholar 

  • Wieking K, Knockaert M, Leost M, et al (2002) Synthesis of paullones with aminoalkyl side chains. Arch Pharm (Weinheim) 335:311–317

    Article  CAS  Google Scholar 

  • Zaharevitz D, Gussio R, Leost M, et al (1999) Discovery and initial characterization of the paullones, a novel class of small-molecule inhibitors of cyclin-dependent kinases. Cancer Res 59:2566–2569

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Meijer, L., Leost, M., Lozach, O., Schmitt, S., Kunick, C. (2005). The Paullones: A Family of Pharmacological Inhibitors of Cyclin-Dependent Kinases and Glycogen Synthase Kinase 3. In: Pinna, L.A., Cohen, P.T. (eds) Inhibitors of Protein Kinases and Protein Phosphates. Handbook of Experimental Pharmacology, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26670-4_3

Download citation

Publish with us

Policies and ethics