Skip to main content

Serine/Threonine Protein Phosphatase Inhibitors with Antitumor Activity

  • Chapter
Book cover Inhibitors of Protein Kinases and Protein Phosphates

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 167))

Abstract

Recent studies with fostriecin and derivatives of cantharidin suggest that the development of specific, or highly selective, inhibitors of serine/threonine protein phosphatases, notably PP2A, PP4, and PP5, may prove useful for the medical management of human cancer. This chapter will review the discovery and development of natural compounds that were originally shown to have marked antitumor activity and subsequently found to act as potent inhibitors of certain PPP-family phosphatases. The review will focus on two compounds, cantharidin and fostriecin, addressing discovery, molecular mechanisms of action, affects on cultured cell, clinical use, toxicity, plasma pharmacokinetics, and a brief review of data from a phase I human clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong SC, Kao R, Gao W, Shivell LC, Downey JM, Honkanen RE, Ganote CE (1997) Comparison of in vitro preconditioning responses of isolated pig and rabbit cardiomyocytes: effects of a protein phosphatase inhibitor, fostriecin. J Mol Cell Cardiol 29:3009–24

    PubMed  CAS  Google Scholar 

  • Armstrong SC, Gao W, Lane JR, Ganote CE (1998) Protein phosphatase inhibitors calyculin A and fostriecin protect rabbit cardiomyocytes in late ischemia. J Mol Cell Cardiol 30:61–73

    Article  PubMed  CAS  Google Scholar 

  • Bagatell FK, Dugan K, Wilgram GF (1969) Structural and biochemical changes in tissues isolated from the cantharidin-poisoned rat with special emphasis upon hepatic subcellular particles. Toxicol Appl Pharmacol 15:249–61

    Article  PubMed  CAS  Google Scholar 

  • Baguley BC, Calveley SB, Crowe KK, Fray LM, O’Rourke SA, Smith GP (1989) Comparison of the effects of flavone acetic acid, fostriecin, homoharringtonine and tumour necrosis factor alpha on colon 38 tumours in mice. Eur J Cancer Clin Oncol 25:263–9

    Article  PubMed  CAS  Google Scholar 

  • Boe R, Gjertsen BT, Vintermyr OK, Houge G, Lanotte M, Doskeland SO (1991) The protein phosphatase inhibitor okadaic acid induces morphological changes typical of apoptosis in mammalian cells. Exp Cell Res 195:237–46

    Article  PubMed  CAS  Google Scholar 

  • Boger DL, Ichikawa S, Zhong W (2001) Total synthesis of fostriecin (CI-920). J Am Chem Soc 123:4161–7

    PubMed  CAS  Google Scholar 

  • Boritzki TJ, Wolfard TS, Besserer JA, Jackson RC, Fry DW (1988) Inhibition of type II topoisomerase by fostriecin. Biochem Pharmacol 37:4063–8

    Article  PubMed  CAS  Google Scholar 

  • Borthwick EB, Zeke T, Prescott AR, Cohen PTW (2001) Nuclear localization of protein phosphatase 5 is dependent on the carboxy-terminal region. FEBS Lett 491:279–84

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Beck WT (1993) Teniposide-resistant CEM cells, which express mutant DNA topoisomerase II alpha, when treated with non-complex-stabilizing inhibitors of the enzyme, display no cross-resistance and reveal aberrant functions of the mutant enzyme. Cancer Res 53:5946–53

    PubMed  CAS  Google Scholar 

  • Cheng A, Balczon R, Zuo Z, Koons JS, Walsh AH, Honkanen RE (1998) Fostriecin-mediated G2/M-phase growth arrest correlates with abnormal centrosome replication, the formation of aberrant mitotic spindles, and the inhibition of serine/threonine protein phosphatase activity. Cancer Res 58:3611–9

    PubMed  CAS  Google Scholar 

  • Cohen PTW (1997) Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci 22:245–51

    Article  PubMed  CAS  Google Scholar 

  • de Jong S, Zijlstra JG, Mulder NH, de Vries EG (1991) Lack of cross-resistance to fostriecin in a human small-cell lung carcinoma cell line showing topoisomerase II-related drug resistance. Cancer Chemother Pharmacol 28:461–4

    Article  PubMed  Google Scholar 

  • de Jong RS, de Vries EG, Mulder NH (1997) Fostriecin: a review of the preclinical data. Anticancer Drugs 8:413–8

    PubMed  Google Scholar 

  • de Jong RS, de Vries EG, Meijer S, de Jong PE, Mulder NH (1998) Renal toxicity of the anticancer drug fostriecin. Cancer Chemother Pharmacol 42:160–4

    PubMed  Google Scholar 

  • de Jong RS, Mulder NH, Uges DR, Sleijfer DT, Hoppener FJ, Groen HJ, Willemse PH, van der Graaf WT, deVries EG (1999) Phase I and pharmacokinetic study of the topoisomerase II catalytic inhibitor fostriecin. Br J Cancer 79:882–7

    Article  PubMed  Google Scholar 

  • Downey JM, Cohen MV (1997) Signal transduction in ischemic preconditioning. Adv Exp Med Biol 430:39–55

    PubMed  CAS  Google Scholar 

  • Essers M, Wibbeling B, Haufe G (2001) Synthesis of the first fluorinated cantharidin analogues. Tetrahedron Lett 42:5429–33

    Article  CAS  Google Scholar 

  • Fattman CL, Allan WP, Hasinoff BB, Yalowich JC (1996) Collateral sensitivity to the bis-dioxopiperazine dexrazoxane (ICRF-187) in etoposide (VP-16)-resistant human leukemia K562 cells. Biochem Pharmacol 52:635–42

    Article  PubMed  CAS  Google Scholar 

  • Frosina G, Rossi O (1992) Effect of topoisomerase poisoning by antitumor drugs VM 26, fostriecin and camptothecin on DNA repair replication by mammalian cell extracts. Carcinogenesis 13:1371–7

    PubMed  CAS  Google Scholar 

  • Fry DW, Besserer JA, Boritzki TJ (1984) Transport of the antitumor antibiotic Cl-920 into L1210 leukemia cells by the reduced folate carrier system. Cancer Res 44:3366–70

    PubMed  CAS  Google Scholar 

  • Fry DW, Boritzki TJ, Jackson RC (1984a) Studies on the biochemical mechanism of the novel antitumor agent, CI-920. Cancer Chemother Pharmacol 13:171–5

    Article  PubMed  CAS  Google Scholar 

  • Gorczyca W, Gong J, Ardelt B, Traganos F, Darzynkiewicz Z (1993a) The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumor agents. Cancer Res 3:3186–92

    Google Scholar 

  • Gorczyca W, Gong J, Darzynkiewicz Z (1993b) Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res 53:1945–51

    PubMed  CAS  Google Scholar 

  • Gorczyca W, Bigman K, Mittelman A, Ahmed T, Gong J, Melamed MR, Darzynkiewicz Z (1993c) Induction of DNA strand breaks associated with apoptosis during treatment of leukemias. Leukemia 7:659–70

    PubMed  CAS  Google Scholar 

  • Graziano MJ, Waterhouse AL, Casida JE (1987) Cantharidin poisoning associated with specific binding site in liver. Biochem Biophys Res Commun 149:79–85

    Article  PubMed  CAS  Google Scholar 

  • Graziano MJ, Pessah IN, Matsuzawa M, Casida JE (1988) Partial characterization of specific cantharidin binding sites in mouse tissues. Mol Pharmacol 33:706–12

    PubMed  CAS  Google Scholar 

  • Guo XW, Th’ng JP, Swank RA, Anderson HJ, Tudan C, Bradbury EM, Roberge M (1995) Chromosome condensation induced by fostriecin does not require p34cdc2 kinase activity and histone H1 hyperphosphorylation, but is associated with enhanced histone H2A and H3 phosphorylation. EMBO J 14:976–85

    PubMed  CAS  Google Scholar 

  • Hastie CJ, Cohen PTW (1998) Purification of protein phosphatase 4 catalytic subunit: inhibition by the antitumour drug fostriecin and other tumour suppressors and promoters. FEBS Lett 431:357–61

    Article  PubMed  CAS  Google Scholar 

  • Helps NR, Brewis ND, Lineruth K, Davis T, Kaiser K, Cohen PTW (1998) Protein phosphatase 4 is an essential enzyme required for organisation of microtubules at centrosomes in Drosophila embryos. J Cell Sci 111:1331–40

    PubMed  CAS  Google Scholar 

  • Ho DT, Roberge M (1996) The antitumor drug fostriecin induces vimentin hyperphosphorylation and intermediate filament reorganization. Carcinogenesis 17(5):967–72

    PubMed  CAS  Google Scholar 

  • Hokanson GC, French JC (1985) Novel antitumor agents CI-920, Pd 113271, PD113,271 III; Structure determination. J Org Chem 50:462–6

    Article  CAS  Google Scholar 

  • Hong CY, Huang SC, Lin SK, Lee JJ, Chueh LL, Lee CH, Lin JH, Hsiao M (2000) Norcantharidin-induced post-G(2)/M apoptosis is dependent on wild-type p53 gene. Biochem Biophys Res Commun 76:278–85

    Google Scholar 

  • Honkanen RE (1993) Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS Lett 330:283–6

    Article  PubMed  CAS  Google Scholar 

  • Honkanen RE, Golden T (2002) Regulators of serine/threonine protein phosphatases at the dawn of a clinical era. Curr Med Chem 9:2055–75

    PubMed  CAS  Google Scholar 

  • Hotz MA, Traganos F, Darzynkiewicz Z (1992a) Changes in nuclear chromatin related to apoptosis or necrosis induced by the DNA topoisomerase II inhibitor fostriecin in MOLT-4 and HL-60 cells are revealed by altered DNA sensitivity to denaturation. Exp Cell Res 201:184–91

    Article  PubMed  CAS  Google Scholar 

  • Hotz MA, Del Bino G, Lassota P, Traganos F, Darzynkiewicz Z (1992b) Cytostatic and cytotoxic effects of fostriecin on human promyelocytic HL-60 and lymphocytic MOLT-4 leukemic cells. Cancer Res 52:1530–5

    PubMed  CAS  Google Scholar 

  • Ishida Y, Furukawa Y, Decaprio JA, Saito M, Griffin JD (1992) Treatment of myeloid leukemic cells with the phosphatase inhibitor okadaic acid induces cell cycle arrest at either G1/S or G2/M depending on dose. J Cell Physiol 150:484–92

    Article  PubMed  CAS  Google Scholar 

  • Jackson RC, Fry DW, Boritzki TJ, Roberts BJ, Hook KE, Leopold WR (1985) The biochemical pharmacology of CI-920, a structurally novel antibiotic with antileukemic activity. Adv Enzyme Regul 23:193–215

    PubMed  CAS  Google Scholar 

  • Kiguchi K, Glesne D, Chubb CH, Fujiki H, Huberman E (1994) Differential induction of apoptosis in human breast tumor cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2A. Cell Growth Differ 5:995–1004

    PubMed  CAS  Google Scholar 

  • Leopold WR, Shillis JL, Mertus AE, Nelson JM, Roberts BJ, Jackson RC (1984) Anticancer activity of the structurally novel antibiotic Cl-920 and its analogues. Cancer Res 44:1928–32

    PubMed  CAS  Google Scholar 

  • Lewy DS, Gauss CM, Soenen DR, Boger DL (2002) Fostriecin: chemistry and biology. Curr Med Chem 9:2005–32

    PubMed  CAS  Google Scholar 

  • Li, Y-M, Casida JE (1992) Cantharidin-binding protein: identification as protein phosphatase 2A. Proc Nat Acad Sci USA 89:11867–70

    PubMed  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–34

    Article  PubMed  CAS  Google Scholar 

  • McCluskey A, Sakoff JA (2001) Small molecule inhibitors of serine/threonine protein phosphatases. Mini Rev Med Chem 1:43–55

    Article  PubMed  CAS  Google Scholar 

  • McCluskey A, Keane MA, Mudgee LM, Sim AT, Sakoff J, Quinn RJ (2000a) Anhydride modified cantharidin analogues. Is ring opening important in the inhibition of protein phosphatase 2A? Eur J Med Chem 35:957–64

    Article  CAS  Google Scholar 

  • McCluskey A, Bowyer, MC, Collins E, Sim ATR, Sakoff J, Baldwin ML (2000b) Anhydride modified cantharidin analogues: synthesis, inhibition of protein phosphatases 1 and 2A and anticancer activity. Bioorganic Med Chem Letts 10:1687–90

    CAS  Google Scholar 

  • McCluskey A, Walkom C, Bowyer MC, Ackland SP, Gardiner E, Sakoff J (2001) Cantharimides: a new class of modified cantharidin analogues inhibiting protein phosphatases 1 and 2A. Bioorg Med Chem Letts 11:2941–46

    CAS  Google Scholar 

  • McCluskey A, Keane MA, Walkom CC, Bowyer MC, Sim AT, Young DJ, Sakoff JA (2002a) The first two cantharidin analogues displaying PP1 selectivity. Bioorg Med Chem Lett 12:391–3

    Article  PubMed  CAS  Google Scholar 

  • McCluskey A, Sim AT, Sakoff JA (2002b) Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies. J Med Chem 45:1151–75

    Article  PubMed  CAS  Google Scholar 

  • McCluskey A, Ackland SP, Bowyer MC, Baldwin ML, Garner J, Walkom CC, Sakoff JA (2003) Cantharidin analogues: synthesis and evaluation of growth inhibition in a panel of selected tumour cell lines. Bioorg Chem 31:68–79

    Article  PubMed  CAS  Google Scholar 

  • McDermott CM, Nho CW, Howard W, Holton B (1998) The cyanobacterial toxin, microcystin-LR, can induce apoptosis in a variety of cell types. Toxicon 36:1981–96

    Article  PubMed  CAS  Google Scholar 

  • Moed L, Shwayder TA, Chang MW (2001) Cantharidin revisited: a blistering defense of an ancient medicine. Arch Dermatol 137:1357–60

    PubMed  CAS  Google Scholar 

  • Nicholls DSH, Med D, Christmas TI, Greig DE (1990) Oedemerid Blister beetle dermatosis: a review. J Am Acad Dermatol 22:815–9

    Article  PubMed  CAS  Google Scholar 

  • Nickolls LC, Tear D (1954) Poisoning by cantharidin. Br Med J 2:1384–86

    Article  PubMed  CAS  Google Scholar 

  • Oaks WW, DiTunno JF, Magnani T, Levey HA, Mills, LC (1960) Cantharidin poisoning. Arch Intern Med 105:106–14

    Google Scholar 

  • Pillon L, Moore MJ, Thiessen JJ (1994) Determination of fostriecin pharmacokinetics in plasma using high-pressure liquid chromatography assay. Ther Drug Monit 16:186–90

    PubMed  CAS  Google Scholar 

  • Roberge M, Tudan C, Hung SM, Harder KW, Jirik FR, Anderson H (1994) Antitumor drug fostriecin inhibits the mitotic entry checkpoint and protein phosphatases 1 and 2A. Cancer Res 54:6115–21

    PubMed  CAS  Google Scholar 

  • Sakoff JA, McCluskey A, Keane MA, Ackland SP (1999) Anticancer activity and protein phosphatase 1 and 2A inhibition of a new generation of cantharidin analogues. Proc Am Assoc Cancer Res 40:2610–10

    Google Scholar 

  • Scheithauer W, Von Hoff DD, Clark GM, Shillis JL, Elslager EF (1986) In vitro activity of the novel antitumor antibiotic fostriecin (CI-920) in a human tumor cloning assay. Eur J Cancer Clin Oncol 22:921–6

    Article  PubMed  CAS  Google Scholar 

  • Snaith HA, Armstrong CG, Guo Y, Kaiser K, Cohen PTW (1996) Deficiency of protein phosphatase 2A uncouples the nuclear and centrosome cycles and prevents attachment of microtubules to the kinetochore in Drosophila microtubule star (mts) embryos. J Cell Sci 109:3001–12

    PubMed  CAS  Google Scholar 

  • Sodeoka M, Baba Y, Kobayashi S Hirukawa N (1997) Structure-activity relationship of cantharidin derivatives to protein phosphatases 1, 2A1, and 2B. Bioorg Med Chem Lett 7:1833–36

    Article  CAS  Google Scholar 

  • Spinella MJ, Brigle KE, Sierra EE, Goldman ID (1995) Distinguishing between folate receptor-alpha-mediated transport and reduced folate carrier-mediated transport in L1210 leukemia cells. J Biol Chem 270:7842–9

    Article  PubMed  CAS  Google Scholar 

  • Stampwala SS, Bunge RH, Hurley TR, Willmer NE, Brankiewicz AJ, Steinman CE, Smitka TA, French JC (1983) Novel antitumor agents CI-920, PD 113,270 and PD 113,271. II. Isolation and characterization. J Antibiot (Tokyo) 36:1601–5

    PubMed  CAS  Google Scholar 

  • Stork G (1999) Some contributions to regio and stereo control: from Cincholoipon and Cantharidin to the present. Med Res Rev 19:370–87

    Article  PubMed  CAS  Google Scholar 

  • Stoughton RB, Bagatell F (1959) Cantharidin treatment of warts. J Invest Dermatol 33:287–92

    PubMed  CAS  Google Scholar 

  • Sumiyoshi E, Sugimoto A, Yamamoto M (2002) Protein phosphatase 4 is required for centrosome maturation in mitosis and sperm meiosis in C. elegans. J Cell Sci 115:1403–10

    PubMed  CAS  Google Scholar 

  • Susick RL Jr, Hawkins KL, Pegg DG (1990) Preclinical toxicological evaluation of fostriecin, a novel anticancer antibiotic, in rats. Fundam Appl Toxicol 15:258–69

    Article  PubMed  CAS  Google Scholar 

  • Tunac JB, Graham BD, Dobson WE (1983) Novel antitumor agents CI-920, PD 113,270 and PD 113,271. I. Taxonomy, fermentation and biological properties. J Antibiot (Tokyo) 36:1595–6000

    PubMed  CAS  Google Scholar 

  • Walsh AH, Cheng A, Honkanen RE (1997) Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A. FEBS Lett 416:230–4

    Article  PubMed  CAS  Google Scholar 

  • Walter WG (1989) Antitumor imide derivatives fo 7-oxabicyclo[2.2.1]heptane-2,3-dimethyl-2,3-dicarboxylic acid. J Pharm Sci 78:66–7

    PubMed  CAS  Google Scholar 

  • Wang CC, Wu CH, Hsieh KJ, Yen KY, Yang LL (1990) Cytotoxic effects of cantharidin on the growth of normal and carcinoma cells. Toxicology 147:77–87

    Google Scholar 

  • Wang G-S (1989) Medical use of mylabris in ancient China and recent studies. J Ethnopharmacol 26:147–62

    Article  PubMed  CAS  Google Scholar 

  • Weinbrenner C, Liu GS, Cohen MV, Downey JM (1997) Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart. J Mol Cell Cardiol 29:2383–91

    Article  PubMed  CAS  Google Scholar 

  • Weinbrenner C, Baines CP, Liu GS, Armstrong SC, Ganote CE, Walsh AH, Honkanen RE, Cohen MV, Downey JM (1998) Fostriecin, an inhibitor of protein phosphatase 2A, limits myocardial infarct size even when administered after onset of ischemia. Circulation 98:899–905

    PubMed  CAS  Google Scholar 

  • Ytrehus K, Liu Y, Downey JM (1994) Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol 266:H1145–52

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Honkanen, R.E. (2005). Serine/Threonine Protein Phosphatase Inhibitors with Antitumor Activity. In: Pinna, L.A., Cohen, P.T. (eds) Inhibitors of Protein Kinases and Protein Phosphates. Handbook of Experimental Pharmacology, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26670-4_11

Download citation

Publish with us

Policies and ethics